Machine Learning

Kernelization

Marc Toussaint
University of Stuttgart
Summer 2019
Kernel Ridge Regression—the “Kernel Trick”

- Reconsider solution of Ridge regression (using the Woodbury identity):
 \[\hat{\beta}_{\text{ridge}} = (X^\top X + \lambda I_k)^{-1} X^\top y = X^\top (XX^\top + \lambda I_n)^{-1} y \]
Kernel Ridge Regression—the “Kernel Trick”

• Reconsider solution of Ridge regression (using the Woodbury identity):

\[
\hat{\beta}_{\text{ridge}} = (X^\top X + \lambda I_k)^{-1} X^\top y = X^\top (XX^\top + \lambda I_n)^{-1} y
\]

• Recall \(X^\top = (\phi(x_1), \ldots, \phi(x_n)) \in \mathbb{R}^{k \times n} \), then:

\[
f_{\text{ridge}}(x) = \phi(x)^\top \hat{\beta}_{\text{ridge}} = \phi(x)^\top X^\top \underbrace{(XX^\top + \lambda I)^{-1}}_{K} y
\]

\(K \) is called kernel matrix and has elements

\[
K_{ij} = k(x_i, x_j) := \phi(x_i)^\top \phi(x_j)
\]

\(\kappa \) is the vector: \(\kappa(x)^\top = \phi(x)^\top X^\top = k(x, x_{1:n}) \)

The kernel function \(k(x, x') \) calculates the scalar product in feature space.
The Kernel Trick

- We can rewrite kernel ridge regression as:

$$f_{\text{rigde}}(x) = \kappa(x)^\top(K + \lambda I)^{-1} y$$

with \(K_{ij} = k(x_i, x_j) \)

\(\kappa_i(x) = k(x, x_i) \)

→ at no place we actually need to compute the parameters \(\hat{\beta} \)

→ at no place we actually need to compute the features \(\phi(x_i) \)

→ we only need to be able to compute \(k(x, x') \) for any \(x, x' \)
The Kernel Trick

• We can rewrite kernel ridge regression as:

\[
\hat{f}_{\text{ridge}}(x) = \kappa(x)^\top (K + \lambda I)^{-1} y
\]

with \(K_{ij} = k(x_i, x_j) \)
\(\kappa_i(x) = k(x, x_i) \)

→ at no place we actually need to compute the parameters \(\hat{\beta} \)

→ at no place we actually need to compute the features \(\phi(x_i) \)

→ we only need to be able to compute \(k(x, x') \) for any \(x, x' \)

• This rewriting is called *kernel trick*.

• It has great implications:

 – Instead of inventing funny non-linear features, we may directly invent funny kernels

 – Inventing a kernel is intuitive: \(k(x, x') \) expresses how correlated \(y \) and \(y' \) should be: it is a measure of similarity, it compares \(x \) and \(x' \). Specifying how ‘comparable’ \(x \) and \(x' \) are is often more intuitive than defining “features that might work”.
• Every choice of features implies a kernel.

• But, does every choice of kernel correspond to a specific choice of features?
Reproducing Kernel Hilbert Space

• Let’s define a vector space \mathcal{H}_k, spanned by infinitely many basis elements

$$\{ \phi_x = k(\cdot, x) : x \in \mathbb{R}^d \}$$

Vectors in this space are linear combinations of such basis elements, e.g.,

$$f = \sum_i \alpha_i \phi_{x_i} \quad ; \quad f(x) = \sum_i \alpha_i k(x, x_i)$$

• Let’s define a scalar product in this space. Assuming $k(\cdot, \cdot)$ is positive definite, we first define the scalar product for every basis element,

$$\langle \phi_x, \phi_y \rangle := k(x, y)$$

Then it follows

$$\langle \phi_x, f \rangle = \sum_i \alpha_i \langle \phi_x, \phi_{x_i} \rangle = \sum_i \alpha_i k(x, x_i) = f(x)$$

• The $\phi_x = k(\cdot, x)$ is the ‘feature’ we associate with x. Note that this is a function and infinite dimensional. Choosing $\alpha = (K + \lambda I)^{-1} y$ represents

$$f^{\text{ridge}}(x) = \sum_{i=1}^n \alpha_i k(x, x_i) = \kappa(x)^\top \alpha$$

and shows that ridge regression has a finite-dimensional solution in the basis elements $\{\phi_{x_i}\}$. A more general version of this insight is called representer theorem.
Representer Theorem

- For
 \[f^* = \arg\min_{f \in \mathcal{H}_k} L(f(x_1), \ldots, f(x_n)) + \Omega(\|f\|^2_{\mathcal{H}_k}) \]

 where \(L \) is an arbitrary loss function, and \(\Omega \) a monotone regularization, it holds
 \[f^* = \sum_{i=1}^{n} \alpha_i k(\cdot, x_i) \]

- Proof:
 decompose \(f = f_s + f_\perp \), \(f_s \in \text{span}\{\phi_{x_i} : x_i \in D\} \)
 \[f(x_i) = \langle f, \phi_{x_i} \rangle = \langle f_s + f_\perp, \phi_{x_i} \rangle = \langle f_s, \phi_{x_i} \rangle = f_s(x_i) \]
 \[L(f(x_1), \ldots, f(x_n)) = L(f_s(x_1), \ldots, f_s(x_n)) \]
 \[\Omega(\|f_s + f_\perp\|_{\mathcal{H}_k}^2) \geq \Omega(\|f_s\|_{\mathcal{H}_k}^2) \]
Example Kernels

• Kernel functions need to be positive definite: \(\forall z: |z| > 0 : k(z, z') > 0 \)
 \(\rightarrow \) \(K \) is a positive definite matrix

• Examples:
 – Polynomial: \(k(x, x') = (x^\top x' + c)^d \)
 Let’s verify for \(d = 2, \phi(x) = (1, \sqrt{2}x_1, \sqrt{2}x_2, x_1^2, \sqrt{2}x_1x_2, x_2^2) \top \):
 \[
 k(x, x') = ((x_1, x_2) (x_1', x_2') + 1)^2 \\
 = (x_1x_1' + x_2x_2' + 1)^2 \\
 = x_1^2x_1'^2 + 2x_1x_2x_1'x_2' + x_2^2x_2'^2 + 2x_1x_1' + 2x_2x_2' + 1 \\
 = \phi(x) \top \phi(x')
 \\
 – Squared exponential (radial basis function): \(k(x, x') = \exp(-\gamma |x - x'|^2) \)
Example Kernels

- Bag-of-words kernels: let $\phi_w(x)$ be the count of word w in document x; define $k(x, y) = \langle \phi(x), \phi(y) \rangle$

- Graph kernels (Vishwanathan et al: Graph kernels, JMLR 2010)
 - Random walk graph kernels
Example Kernels

- Bag-of-words kernels: let $\phi_w(x)$ be the count of word w in document x; define $k(x, y) = \langle \phi(x), \phi(y) \rangle$

- Graph kernels (Vishwanathan et al: Graph kernels, JMLR 2010)
 - Random walk graph kernels

- Gaussian Process regression will explain that $k(x, x')$ has the semantics of an (apriori) correlatedness of the yet unknown underlying function values $f(x)$ and $f(x')$
 - $k(x, x')$ should be high if you believe that $f(x)$ and $f(x')$ might be similar
 - $k(x, x')$ should be zero if $f(x)$ and $f(x')$ might be fully unrelated
Kernel Logistic Regression*

For logistic regression we compute \(\beta \) using the Newton iterates

\[
\beta \leftarrow \beta - (X^T W X + 2\lambda I)^{-1} [X^T (p - y) + 2\lambda \beta] \tag{1}
\]

\[
= -(X^T W X + 2\lambda I)^{-1} X^T [(p - y) - W X \beta] \tag{2}
\]

Using the Woodbury identity we can rewrite this as

\[
(X^T W X + A)^{-1} X^T W = A^{-1} X^T (X A^{-1} X^T + W^{-1})^{-1} \tag{3}
\]

\[
\beta \leftarrow -\frac{1}{2\lambda} X^T (X \frac{1}{2\lambda} X^T + W^{-1})^{-1} W^{-1} [(p - y) - W X \beta] \tag{4}
\]

\[
= X^T (X X^T + 2\lambda W^{-1})^{-1} \left[X \beta - W^{-1} (p - y) \right] \tag{5}
\]

We can now compute the discriminative function values \(f_X = X \beta \in \mathbb{R}^n \) at the training points by iterating over those instead of \(\beta \):

\[
f_X \leftarrow X X^T (X X^T + 2\lambda W^{-1})^{-1} \left[X \beta - W^{-1} (p - y) \right] \tag{6}
\]

\[
= K (K + 2\lambda W^{-1})^{-1} \left[f_X - W^{-1} (p_X - y) \right] \tag{7}
\]

Note, that \(p_X \) on the RHS also depends on \(f_X \). Given \(f_X \) we can compute the discriminative function values \(f_Z = Z \beta \in \mathbb{R}^m \) for a set of \(m \) query points \(Z \) using

\[
f_Z \leftarrow \kappa^T (K + 2\lambda W^{-1})^{-1} \left[f_X - W^{-1} (p_X - y) \right], \quad \kappa^T = ZX^T \tag{8}
\]