Machine Learning

Probabilistic Machine Learning

learning as inference, Bayesian Kernel Ridge regression
= Gaussian Processes, Bayesian Kernel Logistic
Regression = GP classification, Bayesian Neural
Networks

Marc Toussaint
University of Stuttgart
Summer 2019
Learning as Inference

- The parameteric view
 \[
P(\beta|\text{Data}) = \frac{P(\text{Data}|\beta) \ P(\beta)}{P(\text{Data})}
\]

- The function space view
 \[
P(f|\text{Data}) = \frac{P(\text{Data}|f) \ P(f)}{P(\text{Data})}
\]

- Today:
 - Bayesian (Kernel) Ridge Regression ↔ Gaussian Process (GP)
 - Bayesian (Kernel) Logistic Regression ↔ GP classification
 - Bayesian Neural Networks (briefly)
Beyond learning about specific Bayesian learning methods:

Understand relations between

\[
\text{loss/error} \leftrightarrow \text{neg-log likelihood} \nonumber
\]

\[
\text{regularization} \leftrightarrow \text{neg-log prior} \nonumber
\]

\[
\text{cost (reg.+loss)} \leftrightarrow \text{neg-log posterior} \nonumber
\]
Gaussian Process = Bayesian (Kernel) Ridge Regression
Ridge regression as Bayesian inference

- We have random variables $X_{1:n}, Y_{1:n}, \beta$

- We observe data $D = \{(x_i, y_i)\}_{i=1}^n$ and want to compute $P(\beta | D)$

- Let’s assume:

 $P(X)$ is arbitrary

 $P(\beta)$ is Gaussian: $\beta \sim \mathcal{N}(0, \frac{\sigma^2}{\lambda}) \propto e^{-\frac{\lambda}{2\sigma^2} \|\beta\|^2}$

 $P(Y | X, \beta)$ is Gaussian: $y = x^T \beta + \epsilon$, $\epsilon \sim \mathcal{N}(0, \sigma^2)$
Ridge regression as Bayesian inference

- Bayes’ Theorem:

\[
P(\beta | D) = \frac{P(D | \beta) P(\beta)}{P(D)}
\]

\[
P(\beta | x_1:n, y_1:n) = \frac{\prod_{i=1}^{n} P(y_i | \beta, x_i) P(\beta)}{Z}
\]

\(P(D | \beta)\) is a product of independent likelihoods for each observation \((x_i, y_i)\)
Ridge regression as Bayesian inference

- Bayes’ Theorem:

\[
P(\beta \mid D) = \frac{P(D \mid \beta) P(\beta)}{P(D)}
\]

\[
P(\beta \mid x_1:n, y_1:n) = \frac{\prod_{i=1}^{n} P(y_i \mid \beta, x_i) P(\beta)}{Z}
\]

\[P(D \mid \beta)\text{ is a } \text{product} \text{ of independent likelihoods for each observation } (x_i, y_i)\]

Using the Gaussian expressions:

\[
P(\beta \mid D) = \frac{1}{Z'} \prod_{i=1}^{n} e^{-\frac{1}{2\sigma^2} (y_i - x_i^T \beta)^2} e^{-\frac{\lambda}{2\sigma^2} \|\beta\|^2}
\]
Ridge regression as Bayesian inference

- Bayes’ Theorem:

\[
P(\beta | D) = \frac{P(D | \beta) P(\beta)}{P(D)}
\]

\[
P(\beta | x_{1:n}, y_{1:n}) = \frac{\prod_{i=1}^{n} P(y_i | \beta, x_i) P(\beta)}{Z}
\]

\(P(D | \beta)\) is a *product* of independent likelihoods for each observation \((x_i, y_i)\)

Using the Gaussian expressions:

\[
P(\beta | D) = \frac{1}{Z'} \prod_{i=1}^{n} e^{-\frac{1}{2\sigma^2} (y_i - x_i^\top \beta)^2} e^{-\frac{\lambda}{2\sigma^2} \|\beta\|^2}
\]

\[-\log P(\beta | D) = \frac{1}{2\sigma^2} \left[\sum_{i=1}^{n} (y_i - x_i^\top \beta)^2 + \lambda \|\beta\|^2 \right] + \log Z'
\]

\[-\log P(\beta | D) \propto L^{\text{ridge}}(\beta)
\]

1st insight: The *neg-log posterior* \(P(\beta | D)\) is proportional to the cost function \(L^{\text{ridge}}(\beta)\)!
Ridge regression as Bayesian inference

- Let us compute \(P(\beta \mid D) \) explicitly:

\[
P(\beta \mid D) = \frac{1}{Z'} \prod_{i=1}^{n} e^{-\frac{1}{2\sigma^2} (y_i - x_i^T \beta)^2} e^{-\frac{\lambda}{2\sigma^2} \|\beta\|^2}
= \frac{1}{Z'} e^{-\frac{1}{2\sigma^2} \sum_i (y_i - x_i^T \beta)^2} e^{-\frac{\lambda}{2\sigma^2} \|\beta\|^2}
= \frac{1}{Z'} e^{-\frac{1}{2\sigma^2} [(y-X\beta)^T(y-X\beta) + \lambda \beta^T \beta]}
= \frac{1}{Z'} e^{-\frac{1}{2} \left[\frac{1}{\sigma^2} y^T y + \frac{1}{\sigma^2} \beta^T (X^T X + \lambda I) \beta - \frac{2}{\sigma^2} \beta^T X^T y \right]}
= N(\beta \mid \hat{\beta}, \Sigma)
\]

This is a Gaussian with covariance and mean

\[
\Sigma = \sigma^2 (X^T X + \lambda I)^{-1}, \quad \hat{\beta} = \frac{1}{\sigma^2} \Sigma X^T y = (X^T X + \lambda I)^{-1} X^T y
\]

- **2nd insight:** The mean \(\hat{\beta} \) is exactly the classical argmin\(_\beta \) \(L^{\text{ridge}}(\beta) \).

- **3rd insight:** The Bayesian approach not only gives a mean/optimal \(\hat{\beta} \), but also a variance \(\Sigma \) of that estimate.

(Cp. slide 02:13!)
Predicting with an uncertain β

- Suppose we want to make a prediction at x. We can compute the **predictive distribution** over a new observation y^* at x^*:

$$P(y^* | x^*, D) = \int_\beta P(y^* | x^*, \beta) P(\beta | D) d\beta$$

$$= \int_\beta N(y^* | \phi(x^*)^T \beta, \sigma^2) N(\beta | \hat{\beta}, \Sigma) d\beta$$

$$= N(y^* | \phi(x^*)^T \hat{\beta}, \sigma^2 + \phi(x^*)^T \Sigma \phi(x^*))$$

Note, for $f(x) = \phi(x)^T \beta$, we have $P(f(x) | D) = N(f(x) | \phi(x)^T \hat{\beta}, \phi(x)^T \Sigma \phi(x))$ without the σ^2

- So, y^* is Gaussian distributed around the mean prediction $\phi(x^*)^T \hat{\beta}$:
Wrapup of Bayesian Ridge regression

- **1st insight:** The *neg-log posterior* \(P(\beta | D) \) is equal to the cost function \(L_{\text{ridge}}(\beta) \).

 This is a very very common relation: optimization costs correspond to neg-log probabilities; probabilities correspond to exp-neg costs.

- **2nd insight:** The mean \(\hat{\beta} \) is exactly the classical \(\text{argmin}_\beta L_{\text{ridge}}(\beta) \)

 More generally, the most likely parameter \(\text{argmax}_\beta P(\beta|D) \) is also the least-cost parameter \(\text{argmin}_\beta L(\beta) \). In the Gaussian case, most-likely \(\beta \) is also the mean.

- **3rd insight:** The Bayesian inference approach not only gives a mean/optimal \(\hat{\beta} \), but also a variance \(\Sigma \) of that estimate

 This is a core benefit of the Bayesian view: It naturally provides a probability distribution over predictions ("error bars"), not only a single prediction.
Kernel Bayesian Ridge Regression

- As in the classical case, we can consider arbitrary features $\phi(x)$
- .. or directly use a kernel $k(x, x')$

$$
P(f(x) \mid D) = \mathcal{N}(f(x) \mid \phi(x)^T \hat{\beta}, \phi(x)^T \Sigma \phi(x))$$

$$
\phi(x)^T \hat{\beta} = \phi(x)^T X^T (XX^T + \lambda I)^{-1} y
$$

$$
= \kappa(x) (K + \lambda I)^{-1} y
$$

$$
\phi(x)^T \Sigma \phi(x) = \phi(x)^T \sigma^2 (X^T X + \lambda I)^{-1} \phi(x)
$$

$$
= \frac{\sigma^2}{\lambda} \phi(x)^T \phi(x) - \frac{\sigma^2}{\lambda} \phi(x)^T X^T (XX^T + \lambda I_n)^{-1} X \phi(x)
$$

$$
= \frac{\sigma^2}{\lambda} k(x, x) - \frac{\sigma^2}{\lambda} \kappa(x) (K + \lambda I_n)^{-1} \kappa(x)^T
$$

3rd line: As on slide 05:2
2nd to last line: Woodbury identity $(A + UBV)^{-1} = A^{-1} - A^{-1} U (B^{-1} + VA^{-1}U)^{-1} VA^{-1}$
with $A = \lambda I$

- In standard conventions $\lambda = \sigma^2$, i.e. $P(\beta) = \mathcal{N}(\beta|0, 1)$
 - Regularization: scale the covariance function (or features)
Gaussian Processes

are equivalent to Kernelized Bayesian Ridge Regression
(see also Welling: “Kernel Ridge Regression” Lecture Notes; Rasmussen & Williams sections 2.1 & 6.2; Bishop sections 3.3.3 & 6)

- But it is insightful to introduce them again from the “function space view”: GPs define a probability distribution over functions; they are the infinite dimensional generalization of Gaussian vectors
Gaussian Processes – function prior

• The function space view

\[P(f|D) = \frac{P(D|f) \ P(f)}{P(D)} \]

• A Gaussian Processes prior \(P(f) \) defines a probability distribution over functions:

 – A function is an infinite dimensional thing – how could we define a Gaussian distribution over functions?

 – For every finite set \(\{x_1, .., x_M\} \), the function values \(f(x_1), .., f(x_M) \) are Gaussian distributed with mean and covariance

\[
E\{f(x_i)\} = \mu(x_i) \quad \text{(often zero)} \\
\text{cov}\{f(x_i), f(x_j)\} = k(x_i, x_j)
\]

Here, \(k(\cdot, \cdot) \) is called covariance function

• Second, for Gaussian Processes we typically have a Gaussian data likelihood \(P(D|f) \), namely

\[
P(y \mid x, f) = \mathcal{N}(y \mid f(x), \sigma^2)
\]
Gaussian Processes – function posterior

- The **posterior** $P(f|D)$ is also a Gaussian Process, with the following mean of $f(x)$, covariance of $f(x)$ and $f(x')$: (based on slide 10 (with $\lambda = \sigma^2$))

\[
\mathbb{E}\{f(x)|D\} = \kappa(x)(K + \lambda \mathbf{I})^{-1}y + \mu(x)
\]

\[
\text{cov}\{f(x), f(x')|D\} = k(x, x') - \kappa(x')(K + \lambda \mathbf{I}_n)^{-1}\kappa(x')^\top
\]
Gaussian Processes

(a), prior

(b), posterior

(from Rasmussen & Williams)
GP: different covariance functions

- These are examples from the γ-exponential covariance function

$$k(x, x') = \exp\{-|x - x'|/l\gamma\}$$
GP: derivative observations

(from Rasmussen & Williams)
• Bayesian Kernel Ridge Regression = Gaussian Process

• GPs have become a standard regression method

• If exact GP is not efficient enough, many approximations exist, e.g. sparse and pseudo-input GPs
GP classification = Bayesian (Kernel) Logistic Regression
Bayesian Logistic Regression (binary case)

- f now defines a discriminative function:

$$P(X) = \text{arbitrary}$$

$$P(\beta) = \mathcal{N}(\beta \mid 0, \frac{2}{\lambda}) \propto \exp\{-\lambda \|\beta\|^2\}$$

$$P(Y = 1 \mid X, \beta) = \sigma(\beta^T \phi(x))$$

- Recall

$$L^{\text{logistic}}(\beta) = -\sum_{i=1}^{n} \log p(y_i \mid x_i) + \lambda \|\beta\|^2$$

- Again, the parameter posterior is

$$P(\beta \mid D) \propto P(D \mid \beta) P(\beta) \propto \exp\{-L^{\text{logistic}}(\beta)\}$$
Bayesian Logistic Regression

- Use **Laplace approximation** (2nd order Taylor for L) at $\beta^* = \arg\min_{\beta} L(\beta)$:

 $$L(\beta) \approx L(\beta^*) + \bar{\beta}^T \nabla + \frac{1}{2} \bar{\beta}^T H \bar{\beta} , \quad \bar{\beta} = \beta - \beta^*$$

 At β^* the gradient $\nabla = 0$ and $L(\beta^*) = \text{const}$. Therefore

 $$\tilde{P}(\beta|D) \propto \exp\{-\frac{1}{2} \bar{\beta}^T H \bar{\beta}\}$$

 $$\Rightarrow \quad P(\beta|D) \approx N(\beta|\beta^*, H^{-1})$$

- Then the predictive distribution of the **discriminative function** is also Gaussian!

 $$P(f(x)|D) = \int_{\beta} P(f(x)|\beta) \ P(\beta|D) \ d\beta$$

 $$\approx \int_{\beta} N(f(x)|\phi(x)^T \beta, 0) \ N(\beta|\beta^*, H^{-1}) \ d\beta$$

 $$= N(f(x)|\phi(x)^T \beta^*, \phi(x)^T H^{-1} \phi(x)) =: N(f(x)|f^*, s^2)$$

- The predictive distribution over the label $y \in \{0, 1\}$:

 $$P(y(x)=1|D) = \int_{f(x)} \sigma(f(x)) \ P(f(x)|D) \ df$$

 $$\approx \sigma((1 + s^2 \pi/8)^{-\frac{1}{2}} f^*)$$

 which uses a probit approximation of the convolution.

 \rightarrow The variance s^2 pushes the predictive class probabilities towards 0.5.
Kernelized Bayesian Logistic Regression

- As with Kernel Logistic Regression, the MAP discriminative function f^* can be found iterating the Newton method ↔ iterating GP estimation on a re-weighted data set.
- The rest is as above.
Kernel Bayesian Logistic Regression

is equivalent to Gaussian Process Classification

• GP classification became a standard classification method, if the prediction needs to be a meaningful probability that takes the \textit{model uncertainty} into account.
Bayesian Neural Networks
Bayesian Neural Networks

- Simple ways to get uncertainty estimates:
 - Train ensembles of networks (e.g. bootstrap ensembles)
 - Treat the output layer fully probabilistic (treat the trained NN body as feature vector $\phi(x)$, and apply Bayesian Ridge/Logistic Regression on top of that)

- Ways to treat NNs inherently Bayesian:
 - Infinite single-layer NN \rightarrow GP (classical work in 80/90ies)
 - Putting priors over weights ("Bayesian NNs", Neil, MacKay, 90ies)
 - Dropout (much more recent, see papers below)

- Read
 Gal & Ghahramani: *Dropout as a bayesian approximation: Representing model uncertainty in deep learning* (ICML’16)
 Damianou & Lawrence: *Deep gaussian processes* (AIS 2013)
Dropout in NNs as Deep GPs

- Deep GPs are essentially a chaining of Gaussian Processes
 - The mapping from each layer to the next is a GP
 - Each GP could have a different prior (kernel)

- Dropout in NNs
 - Dropout leads to randomized prediction
 - One can estimate the mean prediction from T dropout samples (MC estimate)
 - Or one can estimate the mean prediction by averaging the weights of the network (“standard dropout”)
 - Equally one can MC estimate the variance from samples
 - Gal & Ghahramani show, that a Dropout NN is a Deep GP (with very special kernel), and the “correct” predictive variance is this MC estimate plus $\frac{pl^2}{2n\lambda}$ (kernel length scale l, regularization λ, dropout prob p, and n data points)
No Free Lunch

- Averaged over all problem instances, any algorithm performs equally. (E.g. equal to random.)
 - “there is no one model that works best for every problem”
Igel & Toussaint: *On Classes of Functions for which No Free Lunch Results Hold* (Information Processing Letters 2003)

- Rigorous formulations formalize this “average over all problem instances”. E.g. by assuming a uniform prior over problems
 - In black-box optimization, a uniform distribution over underlying objective functions $f(x)$
 - In machine learning, a uniform distribution over the hidden true function $f(x)$
 ... and NLF always considers *non-repeating queries*.

- But what does *uniform distribution over functions mean*?
No Free Lunch

- Averaged over *all* problem instances, any algorithm performs equally.
 (E.g. equal to random.)
 - “there is no one model that works best for every problem”
Igel & Toussaint: *On Classes of Functions for which No Free Lunch Results Hold* (Information Processing Letters 2003)

- Rigorous formulations formalize this “average over *all* problem instances”. E.g. by assuming a uniform prior over problems
 - In black-box optimization, a uniform distribution over underlying objective functions \(f(x) \)
 - In machine learning, a uniform distribution over the hidden true function \(f(x) \)
 ... and NLF always considers *non-repeating queries*.

- But what does *uniform distribution over functions mean*?

- NLF is trivial: when any previous query yields NO information at all about the results of future queries, anything is exactly as good as random guessing
Conclusions

- Probabilistic inference is a very powerful concept!
 - Inferring about the world given data
 - Learning, decision making, reasoning can view viewed as forms of (probabilistic) inference

- We introduced Bayes’ Theorem as the fundamental form of probabilistic inference

- Marrying Bayes with (Kernel) Ridge (Logistic) regression yields
 - Gaussian Processes
 - Gaussian Process classification

- We can estimate uncertainty also for NNs
 - Dropout
 - Probabilistic weights and variational approximations; Deep GPs

- No Free Lunch for ML!