In these two exercises you’ll program a NN from scratch, use neural random features for classification, and train it too. Don’t use tensorflow yet, but the same language you used for standard regression & classification. Take slide 04:14 as reference for NN equations.

(DS BSc students may skip 2 b-c, i.e. should at least try to code/draft also the backward pass, but ok if no working solutions.)

1 Programming your own NN – NN initialization and neural random features (5 Points)

(Such an approach was (once) also known as Extreme Learning.)

A standard NN structure is described by \(h_{0:L} \), which describes the dimensionality of the input (\(h_0 \)), the dimensionality of all hidden layers (\(h_1:h_{L-1} \)), and the dimensionality of the output \(h_L \).

a) Code a routine “\(\text{forward}(x, \beta) \)” that computes \(f_\beta(x) \), the forward propagation of the network, for a NN with given structure \(h_{0:L} \). Note that for each layer \(l = 1, \ldots, L \) we have parameters \(W_l \in \mathbb{R}^{h_L \times h_{L-1}} \) and \(b_l \in \mathbb{R}^{h_l} \). Use the leaky ReLu activation function. (2 P)

b) Write a method that initializes all weights such that for each neuron, the \(z_i = 0 \) hyperplane is located randomly, with random orientation and random offset (follow slide 04:21). Namely, choose each \(W_{l,i} \) as Gaussian with sdv \(1/\sqrt{h_{L-1}} \), and choose the biases \(b_{l,i} \sim U(-1,1) \) uniform. (1 P)

c) Consider again the classification data set \(\text{data2Class.txt} \), which we also used in the previous exercise. In each line it has a two-dimensional input and the output \(y_i \in \{0, 1\} \).

Use your NN to map each input \(x \) to features \(\phi(x) = x_{L-1} \), then use these features as input to logistic regression as done in the previous exercise. (Initialize a separate \(\beta \) and optimize by iterating Newton steps.)

First consider just \(L = 2 \) (just one hidden layer and \(x_{L-1} \) are the features) and \(h_1 = 300 \). (2 P)

Extra) How does it perform if we initialize all \(b_l = 0 \)? How would it perform if the input would be rescaled \(x \leftarrow 10^5 x \)? How does the performance vary with \(h_1 \) and with \(L \)?

2 Programming your own NN – Backprop & training (5 Points)

We now also train the network using backpropagation and hinge loss. We test again on \(\text{data2Class.txt} \). As this is a binary classification problem we only need one output neuron \(f_\beta(x) \). If \(f_\beta(x) > 0 \) we classify 1, otherwise we classify 0.

Reuse the “\(\text{forward}(x, \beta) \)” coded above.

a) Code a routine “\(\text{backward}(\delta_{L+1}, x, w) \)” , that performs the backpropagation steps and collects the gradients \(\frac{dc}{dw} \).

For this, let us use a hinge loss. In the binary case (when you use only one output neuron), it is simplest to redefine \(y \in \{-1, +1\} \), and define the hinge loss as \(\ell(f, y) = \max(0, 1 - fy) \), which has the loss gradient \(\delta_L = -y[1 - yf > 0] \) at the output neuron.

Run forward and backward propagation for each \(x, y \) in the dataset, and sum up the respective gradients. (2 P)
b) Code a routine which optimizes the parameters using gradient descent:

\[
\forall l = 1, \ldots, L : \quad W_l \leftarrow W_l - \alpha \frac{d\ell}{dW_l}, \quad b_l \leftarrow b_l - \alpha \frac{d\ell}{db_l}
\]

with step size \(\alpha = .01 \). Run until convergence (should take a few thousand steps). Print out the loss function \(\ell \) at each 100th iteration, to verify that the parameter optimization is indeed decreasing the loss. (2 P)

c) Run for \(h = (2, 20, 1) \) and visualize the prediction by plotting \(\sigma(f_\beta(x)) \) over a 2-dimensional grid. (1 P)