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Abstract. The choice of genetic representation crucially determines the
capability of evolutionary processes to find complex solutions in which
many variables interact. The question is how good genetic representa-
tions can be found and how they can be adapted online to account for
what can be learned about the structure of the problem from previous
samples. We address these questions in a scenario that we term indi-
rect Estimation-of-Distribution: We consider a decorrelated search dis-
tribution (mutational variability) on a variable length genotype space.
A one-to-one encoding onto the phenotype space then needs to induce
an adapted phenotypic variability incorporating the dependencies be-
tween phenotypic variables that have been observed successful previ-
ously. Formalizing this in the framework of Estimation-of-Distribution
Algorithms, an adapted phenotypic variability can be characterized as
minimizing the Kullback-Leibler divergence to a population of previously
selected individuals (parents). Our core result is a relation between the
Kullback-Leibler divergence and the description length of the encoding
in the specific scenario, stating that compact codes provide a way to
minimize this divergence. A proposed class of Compression Evolutionary
Algorithms and preliminary experiments with an L-system compression
scheme illustrate the approach. We also discuss the implications for the
self-adaptive evolution of genetic representations on the basis of neutral-
ity (σ-evolution) towards compact codes.

1 Introduction

The complexity of a problem largely depends on the interactions between vari-
ables of the solution. A stochastic search process like evolution will perform well
on a complex problem only when the search distribution is adapted to these in-
teractions, i.e., when the search distribution obeys these dependencies between
variables. The ability of natural evolution to find highly complex structured or-
ganisms, in which many variables interact in determining the fitness, can only
be understood when acknowledging that evolution did not pursue an exhaustive
search but “learned” to shape the search distribution towards complex, highly
structured organisms (see also [25]).



In evolutionary processes the search distribution is determined by the vari-
ational operators (mutation and recombination) and, in the case of indirect en-
codings, by the choice of genetic representation. The role of the genetic repre-
sentation seems to become particularly important when large and regularly or
hierarchically structured solutions need to be found. The eye-less gene [8] is an
impressive example of a genetic representation specifically designed to induce
modular structured variability in nature.

The general questions are how to find genetic representations that induce
the desired dependencies on the phenotype space, and how they can be adapted
online to account for what can be learned about the structure of the prob-
lem from previous samples. There have been various approaches to characterize
what a good representation is, considering, for example, all possible represen-
tations, Gray vs. binary codes, redundant representations, and recursive encod-
ings [12, 27, 4, 18, 11]. Theoretical approaches concerning the adaptation of the
representation based on the specific current population include, for example,
Estimation-Of-Distribution Algorithms [17], Walsh analysis [10], and Maximal
Entropy principles [28].

Our approach is to consider a specific scenario that we term indirect Estima-
tion-of-Distribution: We assume that the search distribution (mutational vari-
ability) on a variable length genotype space is decorrelated. A one-to-one en-
coding onto the phenotype space then needs to induce a proper structured phe-
notypic variability. The idea of this scenario is that the encoding receives all
responsibilities to induce the structural properties of the phenotypic search dis-
tribution, leaving a simple problem of unstructured (decorrelated) adaptation
on the genotype level.

We formalize the scenario within the framework of Estimation-of-Distribution
Algorithms, where an adapted phenotypic variability can be characterized as
minimizing the Kullback-Leibler divergence to a population of previously se-
lected individuals (parents). Our core result is a relation between the Kullback-
Leibler divergence and the description length of the encoding in the specific
scenario of indirect Estimation-of-Distribution based on a variable length geno-
type space. The result states that compact genetic codes provide a way to min-
imize this divergence—and may thus be seen as transferring similar results on
Minimum Description Length in the context of modeling, in particular model
selection, (e.g., [5, 24]) to the specific domain of evolutionary search based on
adaptive representations.

An intuitive way to grasp these results might be the following: Consider a
set of good (selected) individuals in the phenotype space. In this parent pop-
ulation there will generally exist dependencies between phenotypic variables of
the individuals, measurable as mutual information between them. This informa-
tion on the dependencies—that stem from selection and have their origin in the
structure of the problem—is what should be extracted and exploited for fur-
ther search. Assume we can map these individuals on variable size strings such
that the average string length is minimized. Before the compression there was
mutual information between the (phenotypic) variables. After the compression,



there should be no mutual information between the symbols that describe the
individuals because otherwise the mapping would not be a minimum description
length compression. Thus, a compression is one way (among others) to map on
genotypic representations in which symbols are decoupled (i.e., to map on a fac-
torial code). The compression can also be considered as an implicit analysis of
the dependencies that have been present in the parent population because it is
able to dissolve them by introducing new symbols. Eventually, the key idea is
that inverting the compression is a mechanism to induce exactly these dependen-
cies. In other words, when there is noise (decorrelated mutational variability) on
the genetic symbols, this noise should translate to phenotypic noise that obeys
these dependencies.

The following two sections will introduce the theoretical framework, including
the indirect induction of a search distribution and the principle of Estimation-
of-Distribution Algorithms. Section 4 derives the main results on the relation
between compact codes and Estimation-of-Distribution. Section 5 aims to illus-
trate the approach by proposing a class of Compression Evolutionary Algorithms
and presenting preliminary experiments with a Compression GA based on a sim-
ple L-system compression scheme (similar to the ideas of Nevill-Manning and
Witten [13]). This leads to the discussion, summarizing the main results, but also
considering practical issues on accumulative versus each-time-step compression,
and implications for understanding the fully self-adaptive evolution of genetic
representations on the basis of neutrality (σ-evolution) towards compact codes.

2 Indirect induction of search distributions

Let P be the search space. A heuristic search scheme is a process in the space
ΛP of distributions over the search space in which a search distribution q ∈ ΛP

is propagated iteratively. In each iteration, samples from q are drawn, evaluated,
and the outcome of evaluation is used to design, according to some heuristic, a
new search distribution in the next step.

For instance, in ordinary Evolutionary Algorithms (EAs) the search distri-
bution is given by a finite parent population and recombination and mutation
operators. This search distribution is sampled, leading to the finite offspring pop-
ulation, which is then evaluated, leading to the selection probability distribution
over these offspring. The heuristic to generate the new search distribution in
simple EAs is to sample the selection probability distribution, leading to a new
parent population which in turn induces a new search distribution. We do not
need to specify these operators here explicitly. We develop the theory on the
abstract level of search distributions.

In this paper we are interested in indirect codings of search points. In the
heuristic search framework, this means that a distribution q̃ ∈ ΛG over another
search space G, the genotype space, is maintained. The search distribution q over
the actual search space P (phenotype space) is then given indirectly via a coding



φ : G → P ,

q(x) =
∑

g∈[x]φ

q̃(g) , where x ∈ P, g ∈ G, [x]φ = {g ∈ G | φ(g) = x} .

We also use the short notation q = q̃ ◦ φ−1 for this projection of q̃ under φ. The
set [x]φ of all genotypes mapping to the same phenotype x is an equivalence
class under φ, also called neutral set of x.

Two additional constraints define the “indirect encoding case” considered
in this paper: First, G is the space of variable length strings over some finite
alphabet A,

G =
∞⋃

l=1

Al .

It is technically unclear how to define a marginal over the ith symbol (or mutual
information between symbols) directly for a variable length distribution q̃ ∈ ΛG.
Thus we will consider the decomposition

q̃(g) = q̃(g|l) q̃(l) , where g ∈ G, l = length(g) ∈ N .

Here, q̃(l) is a distribution over the genotype length l ∈ N, and q̃(g|l) the con-
ditional distribution over a fixed length alphabet Al. We use the short notation
q̃l ≡ q̃(·|l) for this length-conditioned distribution. The marginal q̃i

l over the ith
symbol (i ≤ l) and the mutual information I(q̃l) =

∑
i H(q̃i

l) −H(q̃l) can then
be defined as usual.1

As the second constraint we limit the space of possible search distributions
in a certain way: We impose that φ : G → P shall be bijective (one-to-one). We
denote the space of all bijective codings G → P by Φ. And we impose that the
length-conditioned distributions q̃l on the genotype space have to factorize. We
denote the set of feasible genotype distributions by

Q̃ ⊆ {q̃ ∈ ΛG | ∀l : I(q̃l) = 0} .

Putting both together, we have the space Q ⊆ ΛP of feasible search distribution
over P as

Q = {q̃ ◦ φ−1 | φ ∈ Φ, q̃ ∈ Q̃} . (1)

In summary, indirect induction of the search distribution means that, in order
to design a search distribution q ∈ ΛP we have to pick a coding φ ∈ Φ and a
decorrelated distribution q̃ ∈ Q̃ on the genotype space. In other terms, every
feasible search distributions q correspond to a pair (φ, q̃).
1 For a distribution q over some product space A × · · ·A, we generally denote the

marginal over the ith variable by qi. The mutual information I(q) =
P

i H(qi) −
H(q) measures all dependencies between variables of any order (not only pair-wise
dependencies).



3 Estimation-Of-Distribution

What is a reasonable heuristic to design a search distribution given the results of
evaluation of previous sample points? We will follow here the idea of Estimation-
Of-Distribution Algorithms [17] which can be described as follows.

We assume that the outcome of evaluation is given as a distribution p over P ,
typically the parent population.2 Given that the space of feasible search distri-
butions is limited to Q, a simple heuristic to chose the new search distribution
is to pick the one that is most similar to p. Similarity can be measured by
the Kullback-Leibler divergence (KLD) D

(
p : q

)
= Ep

{
log p(x)

q(x)

}
between two

distributions, which also captures the structural similarity between two distri-
butions in the sense of the similarity of the different order dependencies (see [1,
23], please note the relations between the KLD, log-likelihood, free energy, and
mean energy3). Thus, the heuristic to design the new search distribution q′ reads

q′ = argmin
q∈Q

D
(
p : q

)
. (2)

We term this specific kind of an EDA KL-search. The crucial parameter of KL-
search is the choice of the set Q of feasible search distributions. On the one
hand, the choice of Q determines the computational cost of the minimization
(2) in every step. On the other hand, it determines the algorithm’s capability to
exploit the structure observable in p.

Some algorithms of the class of EDAs are exact instantiations of KL-search:
MIMIC [6] chooses Q to be the set of Markov chains, PBIL [2] chooses Q as the
set of factorized distributions. Other EDAs differ from KL-search in the choice
of the similarity measure (they use alternatives to the KLD, e.g., BOA [16] takes
a Bayesian Dirichlet Metric). But all of them can distinctly be characterized by
their choice of Q, which may also be the set of dependency trees [3], Bayesian
networks (BOA, [16]), or Bayesian networks with decision trees at each node
(hBOA, [15]).

Despite its conceptual simplicity, the minimization required in each iteration
of KL-search can be computationally very expensive, depending on the com-
plexity of the distributions in Q. When only simple distributions, like factorized
distributions (PBIL) or Markov chains (MIMIC) are allowed, the minimization

2 Generally, in this formalism p is meant to encode any information that we receive
from evaluations. Typically, p is non-vanishing only on a finite set of samples (the
offspring population) and the values of p might be (in a normalized way) the fitness
values of these offspring. Alternatively, p might represent a resampling of such a
“fitness distribution over offspring”, which corresponds to the parent population.

3 With the definitions of the entropy H(p) = Ep {log p(x)} and the log-likelihood
L(q) = Ep {log q(x)} we have D

`
p : q

´
= −H(p)−L(q). One could roughly say, “min-

imizing the KLD means maximizing the log-likelihood and the entropy”. Further,
when defining an energy functional E(x) = − log q(x) and considering its Boltzmann
distribution p(x) = 1

Z
ε−E(x), then the mean energy E = Ep {E(x)} = −L(q) is the

negative log-likelihood while the free energy F = − ln Z = E −H(p) is the KLD.



can be calculated directly. For more complex distributions (like Bayesian net-
works, BOA), the minimization itself requires an iterative procedure.

Finally note that distributions in Q should typically be constrained to have a
minimum entropy. In that way, a repeated cycle of entropy decrease (in the course
of evaluation) and entropy increase (when picking a new search distribution)
ensures exploration and prevents the algorithms from early convergence.

4 Indirect Estimation-Of-Distribution via compression

KL-search proposes how to pick a new search distribution out of Q incorporating
the knowledge on the evaluation of previous samples. In the indirect coding case,
a choice of q means to pick a coding φ and a factorized distribution q̃ on G.
Putting this together, KL-search amounts to a heuristic to pick a coding φ such
that knowledge on previous evaluations is incorporated. In this section we will
derive results on how this heuristic to pick a coding reads more explicitly. We
first discuss the simpler fixed-length case before addressing the general one:

Fixed-length case. Let us first assume that G contains only strings of fixed
length l, G = Al. Then the marginals q̃i are straight-forward to define and
I(q̃) =

∑
i H(q̃i)−H(q̃) != 0 constrains q̃ to vanishing dependencies (of arbitrary

order) between genes.
Combining (2) with the definition (1) of Q for the case of indirect codings,

we find

D
(
p : q

)
=

∑
x

p(x) ln
p(x)∑

g′∈[x]φ
q̃(g′)

=
∑

g

p̃(g) ln
p̃(g)
q̃(g)

. (3)

Here we defined p̃ as the back-projection of p onto the coding space G, p̃ = p◦φ.
The last step uses that φ has to be bijective such that there exists exactly
one g ∈ [x]φ. Next we use that q̃ has to factorize, q̃(g) = q̃(g1, g2, ..., gl) =
q̃1(g1) q̃2(g2) · · · q̃l(gl),

D
(
p : q

)
=

∑
g

p̃(g) ln
p̃(g)

p̃1(g1) · · · p̃l(gl)
+

∑
g

p̃(g) ln
p̃1(g1) · · · p̃l(gl)
q̃1(g1) · · · q̃l(gl)

= I(p̃) + D
(
p̃(1) : q̃

)
. (4)

Here we defined p̃(1)(g) = p̃1(g1) p̃2(g2) · · · p̃l(gl) as the “factorized reduction” of
p̃ (i.e, the product of its marginals, see also [1, 23] on how to generally define the
kth order reduction p̃(k) of p̃ containing all and only the dependencies of order
≤ k within p̃).

This result states that, in order to follow the KL-search scheme in the indirect
coding case, one should find a coding φ and a search distribution q̃ such that
I(p̃) + D

(
p̃(1) : q̃

)
is minimized.

Here, I would like to distinguish two cases. In the first case we assume that
Q̃ comprises all factorized distributions without a bound on the entropy. In this



case, no matter which φ is chosen, one can always minimize D
(
p̃(1) : q̃

)
down to

zero by picking q̃ = p̃(1). Thus, since I(p̃) is independent of q̃, the minimization
(2) can be realized by first optimizing φ and then picking q̃:

q′ = argmin
q∈Q

D
(
p : q

)
= (φ, q̃) , where φ = argmin

φ
I(p̃) and q̃ = p̃(1) .

We call this procedure (first optimizing φ, then picking q̃) the two step procedure.
Note that p̃(1) in the last equation depends on the φ chosen before.

However, in a realistic algorithm, Q̃ should not comprise all factorized distri-
butions but obey a lower bound on the entropy of these distributions to ensure
exploration. (Recall that for q̃ = p̃(1), and since φ is bijective, H(p) = H(p̃) =
H(p̃(1))− I(PG) = H(q̃)− I(p̃) = H(q)− I(p̃). Therefore, the entropy of search
H(q) would only be greater than H(p) by the amount of I(p̃), which is min-
imized.) Hence, in the second case, when Q̃ is only a subset of all factorized
distributions, D

(
p̃(1) : q̃

)
can generally not be minimized to zero and the mini-

mization of (2) can not exactly be decomposed in the two steps of first minimizing
I(p̃) w.r.t. φ, and then, for a fixed φ, minimizing D

(
p̃(1) : q̃

)
w.r.t. q̃. The exact

minimization of (2) remains a coupled problem of finding a pair (φ, q̃).
For completeness, let us estimate a bound on the “error” made when still

adopting the two step procedure of minimization. Let (φ∗, q̃∗) be a coding and
genotype distribution that indeed minimize (2), and let (φ′, q̃′) be the result of
the two step procedure, i.e., φ′ minimizes I(p̃′) and q̃′ minimizes D

(
p̃′(1) : q̃′

)
for the given coding φ′. Here, p̃′ = p ◦φ′ and p̃∗ = p ◦φ∗. A rough bound for the
error made can be estimated as follows, to be explained in detail below,

D
(
p : q′

)
−D

(
p : q∗

)
= D

(
p̃′(1) : q̃′

)
−D

(
p̃∗(1) : q̃∗

)
+ I(p̃′)− I(p̃∗)

≤ D
(
p̃′(1) : q̃′

)
−D

(
p̃∗(1) : q̃∗

)
≤ D

(
p̃′(1) : q̃′

)
=

l∑
i=1

D
(
p̃′i : q̃′i

)
≤ −l log q̃′i(ai) = − l log(1−α) ≤ l ~ .

The first inequality stems from the fact that φ′ minimizes I(p̃′) and thus I(p̃′) ≤
I(p̃∗). Since both, p̃′(1) and q̃′, are factorized distributions, their Kullback-Leibler
divergence decomposes into a sum. For each marginal, when there is a lower
bound ~ on the entropy of q̃′i, the divergence D

(
p̃′i : q̃′i

)
is particularly large

when p̃′i has very low entropy. In the worst case, p̃′i has zero entropy, i.e., is non-
zero only for a single symbol ai ∈ A. In that case D

(
p̃′i : q̃′i

)
= − log q̃′i(ai). In

order to minimize D
(
p̃′i : q̃′i

)
, q̃′i is chosen to have the form of the typical symbol

mutation distribution with mutation rate α, where q̃′i(a) = 1−α for a = ai and
q̃′i(a) = α

|A|−1 for a 6= ai. Then, H(q̃i) = −(1−α) log(1−α)− α log α
|A|−1 . Given

the lower bound ~ on the entropy, the minimal mutation rate α can be chosen
to ensure H(q̃i) = ~ and D

(
p̃i : q̃i

)
= − log(1−α) ≤ ~. Thus, in the worst

case, the “error” made when using the two step procedure instead of the exact
minimization of (2) is smaller than l ~.



Variable-length case. Let us repeat the above derivations in the general case
when G =

⋃∞
l=1 Al comprises strings of any length over the alphabet A. The con-

straint of vanishing mutual information in q̃ now refers to the length-conditioned
distributions q̃l, i.e., we impose I(q̃l) = 0 while q̃(l) is unconstrained. (Recall
q̃(g) = q̃l(g) q̃(l) where l = length(g).) Equation (3) now leads to

D
(
p :q

)
=

∑
l

∑
g

p̃l(g)p̃(l) ln
p̃l(g)p̃(l)
q̃l(g)q̃(l)

=
∑

l

p̃(l)
∑

g

p̃l(g) ln
p̃l(g)
q̃l(g)

+
∑

l

p̃(l) ln
p̃(l)
q̃(l)

=
∑

l

p̃(l)
∑

g

p̃l(g) ln
p̃l(g)

p̃
(1)
l (g)

+
∑

l

p̃(l)
∑

g

p̃l(g) ln
p̃
(1)
l (g)
q̃l(g)

+ D
(
p̃(l) : q̃(l)

)
= El {I(p̃l)}+ El

{
D

(
p̃
(1)
l : q̃l

)}
+ D

(
p̃(l) : q̃(l)

)
, (5)

where we introduced El {·} as the expectation over p̃(l) (which depends on φ).
The entropy of p can be written as

H(p) = −
∑

g

p(g) ln p(g) = −
∑

l

p̃(l)
∑

g

p̃l(g) ln[p̃l(g) p̃(l)]

= −
∑

l

p̃(l)
[ ∑

g

p̃l(g) ln p̃l(g) +
∑

g

p̃l(g) ln p̃(l)
]

=
∑

l

p̃(l)H(p̃l(g)) + H(p̃(l))

=
∑

l

p̃(l)
[ l∑

i=1

H(p̃i
l)− I(p̃l)

]
+ H(p̃(l))

= El

{
l∑

i=1

H(p̃i
l)

}
− El {I(p̃l)}+ H(p̃(l)) . (6)

Adding equations (5) and (6) we find

Lemma 1. In the indirect encoding case, for any p ∈ ΛP , any bijective encoding
φ : G → P , and any factorized genotype distributions q̃ ∈ Q̃, we have

D
(
p :q

)
= El {I(p̃l)}+ El

{
D

(
p̃
(1)
l : q̃l

)}
+ D

(
p̃(l) : q̃(l)

)
(7)

= El

{
l∑

i=1

H(p̃i
l)

}
+ El

{
D

(
p̃
(1)
l : q̃l

)}
+ D

(
p̃(l) : q̃(l)

)
+ H(p̃(l))−H(p) .

(8)

The second RHS term in equation (8) is a comparison of only the marginals
of p̃l and q̃l, the third term is a comparison of the length distributions, the
fourth term is the entropy of the genotype length, which depends on φ, and



the last term depends only on p, not on φ or q̃. The first term in equation (8)
is of particular interest here. The following bounds show how it relates to the
description length. Note that log |A| is the maximal entropy of a marginal:

El

{
l∑

i=1

H(p̃i
l)

}
≤ log |A| El

{
l∑

i=1

1

}
= log |A| El {l} = Lp log |A| , (9)

where we introduce Lp = El {l} as the expected description length of samples of
p in the encoding φ. On the other hand, from (6), we get

El

{
l∑

i=1

H(p̃i
l)

}
≥ H(p)−H(p̃(l)) . (10)

Note that for an optimally compact coding Lp log |A| = H(p) − H(p̃(l)),4 and
both bounds are exact.

We collect these findings in

Lemma 2. In the indirect encoding case, the description length Lp of samples
from p (e.g., parents) gives an upper bound on D

(
p : q

)
as follows:

0 ≤ D
(
p : q

)
− El

{
D

(
p̃
(1)
l : q̃l

)}
−D

(
p̃(l) : q̃(l)

)
≤ Lp log |A| −H(p) + H(p̃(l)) .

For an optimally compact encoding φ, these bounds are exact, i.e., we have

D
(
p : q

)
= El

{
D

(
p̃
(1)
l : q̃l

)}
+ D

(
p̃(l) : q̃(l)

)
,

and D
(
p : q

)
can easily be minimized by adapting the genotype marginals q̃i

l and
the length distribution q̃(l) (which can be set equal to p̃(l)).

Let us briefly summarize and discuss these results by emphasizing certain
aspects:

1. Compression is doing “more than we need”: Reconsider the exact expressions
(7) and (8) of lemma 1. We related the term El

{∑
i H(p̃i

l)
}

to the description Lp

via the bound (9) and showed that this bound is exact for an optimal compres-
sion. One should note though that compression is not the only way to minimize
the term El

{∑
i H(p̃i

l)
}
; it can equally be minimized by reducing the marginal

entropies H(p̃i
l), which means not to exploit the expressional power of the al-

phabet. This can better be understood going back to expression (7) involving
the mutual information: Ultimately, what matters is to reduce El {I(p̃l)}, i.e.
finding a factorial code, which can also be done perfectly with very low marginal
4 Here is a slight difference to the usually considered case of channel capacity: In our

case, the length of a genome itself can carry information (even for A = {0}) of the
amount H(p̃(l)) such that the symbols only need to encode H(p)−H(p̃(l)) entropy.
In the channel capacity case, where a continuous stream of symbols is transmitted,
the exact bound is Lp log |A| = H(p), as for the Shannon-Fano code.



entropies, not exploiting the alphabet. By relating it to the description length
we showed that a compression is reducing El {I(p̃l)} while additionally trying to
exploit the alphabet optimally. Thus, compression is doing “more than we need”
from the strict point of view of minimizing D

(
p : q

)
. Clearly, this also means

that an optimally compact coding is not the only solution to minimize D
(
p : q

)
via indirect induction—but it is one.

2. If there are no further constraints on q̃ (e.g., no entropy bound) then q̃l and
q̃(l) can be set equal to p̃

(1)
l and p̃(l), thus perfectly minimizing El

{
D

(
p̃
(1)
l : q̃l

)}
+

D
(
p̃(l) : q̃(l)

)
. In this case, we have

D
(
p : q

)
= El {I(p̃l)} = El

{
l∑

i=1

H(p̃i
l)

}
+ H(p̃(l))−H(p) ,

and the problem reduces to finding an encoding that extinguishes the mutual
information El {I(p̃l)} or, as discussed, an optimal compression.

3. The two step procedure: If Q̃ is additionally constrained by a bound on the
entropy, minimizing D

(
p : q

)
remains a coupled problem of reducing El {I(p̃l)}

by a proper choice of φ and reducing El

{
D

(
p̃
(1)
l : q̃l

)}
+D

(
p̃(l) : q̃(l)

)
by a proper

choice of q̃, which though depends on φ. We discussed this coupled problem
already in the fixed-length case. The two step procedure of first finding a compact
coding φ of p and then adapting the marginals of q̃ to those of p ◦ φ is an
approximate method for this minimization. In the worst case one may miss a
reduction of D

(
p : q

)
by an amount ≤ Lp ~, when ~ is the lower bound on the

entropy in each marginal q̃i
l . Note that a compact coding minimizes this worst

case error.

5 Compression EAs

This section aims to provide a perspective on how the ideas on compact codes
motivate the design of new Evolutionary Algorithms. We will propose a general
scheme to design such algorithms but can present preliminary results only for a
special case that is more in the line of conventional GAs rather than EDAs and
close to algorithms proposed earlier. The results are promising. Most importantly
though, the experiments exhibit what are crucial aspects to be discussed when
the aim are practical implementations of the principle of compact codes.

A straight-forward way to design a new Evolutionary Algorithm, exploiting
the idea of compact codes, is to combine any compression technique with any
standard EA. Such a Compression EA reads

1. Initialize a finite population p = {p1, .., pµ}.
2. Use a compression technique to find an encoding φ that (approximately) mini-

mizes Lp =
Pµ

i=1 length(φ−1(pi)).



3. Apply standard operators (e.g., mixing or EDA-operators) to generate λ off-
spring genotypes from the µ compressed parent genotypes.

4. Map the λ offspring genotypes from G back to P using φ.

5. Apply evaluation and selection on these offspring to generate the new parent
population p′ and repeat from step 2.

The operators in step 3 may be any standard operators used in Evolutionary
Algorithms. They have to be memory-less though, since the encoding will change
in each iteration step and thus integrating knowledge from previous time steps
becomes futile (cf. the discussion of cumulative compression as an alternative in
section 6).

For instance, a most direct implementation of KL-search calculates the length
and marginal distributions before resampling them (very similar to the PBIL
algorithm, but accounting for variable size strings). This leads to the following
Compression EDA:

3.a Calculate the length distributions p̃(l) and the symbol marginals p̃i
l for each l

from the compressed population p̃.

3.b Set q̃(l) = p̃(l) and add entropy by mixing the marginals with the uniform
symbol distribution U, q̃i

l = (1− α) p̃i
l + α U.

3.c Take λ samples from the distribution q̃ by recursively (i) picking an l from q̃(l),
(ii) ∀l

i=1 pick a symbol gi from q̃i
l , and (iii) store g = (g1, .., gl) as a new

offspring genotype.

We must leave it to future work to present results on this Compression EDA.
In the following we will investigate a concrete algorithm that is based on conven-
tional mutation operators rather than such an EDA and similar to algorithms
proposed earlier [7, 20]. The compression technique is based on L-systems, very
simple, but computationally expensive. It is inspired by the work of Nevill-
Manning and Witten [13]. Below we will briefly report on some experiences
when using Lempel-Ziv compression (i.e., the algorithm of gzip) instead.

5.1 A L-system Compression GA

The Compression. Step 2 of a Compression EA requires to find an encoding φ
that minimizes the description length of individuals averaged over the current
parent population. A simple technique of compression is to recursively analyze
the samples for frequent pairs of neighboring symbols and replace such pairs by
new symbols (cf. [13]). We realize this scheme with an L-system:

A L-system is a sequence Π = 〈π1, .., πk〉 of k productions πi. Given the
alphabet A, each production π = 〈l : r1, .., rm〉 consists of a LHS symbol l ∈ A

and a sequence 〈r1, .., rm〉 of RHS symbols. The L-system Π defines a mapping
φ from one sequence s to another by applying all productions πi, in the given
order, on s. Applying a production 〈l : r1, .., rm〉 on s means to replace every l
that occurs in s by the sequence 〈r1, .., rm〉. For instance, if the L-system is Π =
〈e:cd, f:dc, c:ab, d:ba〉, then a sequence 〈ef〉 is mapped to φ(〈ef〉) = 〈abbabaab〉.
The mapping φ can easily be inverted by applying all productions, in reverse



order, inversely on a sequence. Inverse application of a production 〈l :r1, .., rm〉−1

on s means to replace every subsequence 〈r1, .., rm〉 that occurs in s by l.
Let A be the non-negative integer numbers, A = N0. Starting with a pop-

ulation p = {s1, .., sµ} of {0, 1}-sequences, there is a straight-forward way to
construct an L-system that compresses the population by recursively extracting
and encapsulating pairs of symbols that occur frequently in the population. This
scheme reads

2.a Initialize the L-system as Π = 〈 〉 and the new -symbol as c = 2.

2.b Calculate the frequency of every symbol pair that occurs in the population.

2.c For every pair 〈r1, r2〉 of symbols that occurs more often than once, create a
new production 〈c :r1, r2〉, append it to the beginning of Π, and increment the
new -symbol c← c + 1. This is to be done in order, beginning with the pair of
highest frequencies, and random order between pairs of same frequency. If there
is no such pairs, exit the recursion.

2.d Recode the population p ← {φ−1(p1), .., φ
−1(pµ)} (effectively, only the new

productions will result in replacements).

2.f Repeat from step 2.b.

The entropy. Following the general scheme of a Compression EA, we next need
to specify a mixing operator in step 3. This operator is supposed to induce the
necessary entropy in q̃. We discussed earlier that this entropy should exceed the
entropy H(p) of the parent population to ensure further exploration, and we han-
dled this issue theoretically by putting a lower bound on the entropy of feasible
search distributions in the minimization of the Kullback-Leibler divergence.

However, first experiments showed quickly that there is an interesting prob-
lem when using the above compression in a straight-forward manner. Actually,
the compression can be considered as too good and eventually violating the
constraint of the lower bound on entropy: In the case of a finite population, the
compression scheme often leads to what we term a full compression, where in the
end every individual is represented by a different single symbol. The compressed
population thus is only a set of µ different single symbols, and the description
length was minimized down to 1. The mutual information indeed vanishes for the
full compression. However, on this representation it is impossible to induce more
entropy than the parent population had (which is, if they are disjoint, log µ).
The parent population already has maximal entropy under all distributions over
only one symbol (since q̃(l) = p̃(l) is fixed) of the alphabet {1, .., µ}. Thus, the
full compression violates the constraint of the lower bound on entropy of q̃ and
is thus infeasible.

A solution to this problem with the above compression scheme would be to
stop compression at some level, maybe at the price that the mutual information
is not fully extinguished, but allowing for the addition of entropy. We follow this
approach by choosing the level of compression stochastically or, equivalently, to
add entropy on different levels of compression.

Concretely, the algorithm stochastically decides whether to apply one-point
mutations on each level of compression, i.e., in each recursion of the compression
scheme. We insert the following step in the compression recursion:



2.e For each individual, decide with a probability α whether to apply a one-point
mutation. A one-point mutation randomly picks a location and, with equal
probabilities, deletes it, replaces it with a new symbol in {0, .., c− 1}, or inserts
such a new symbol.

This competes the description of the algorithm which omits an additional step
3.

The Hierarchical XOR problem. The fitness function we consider is the Hier-
archical XOR (HXOR) function [26, 7]. For a string s ∈ {0, 1}n we first de-
fine a boolean function h(s) ∈ {0, 1}, determining whether s is “valid” or not:
Let n = length(s) be the string length, l ∈ N0 such that n/2 ≤ 2l < n
(l = blog2(n−1)c), and L = s1:2l and R = s2l+1:n the left and right parts of
the string when cut at location 2l. Then, for n ≥ 2, we define

h(s) = 1 ⇐⇒
[
n = 2l+1 ∧ h(L) = 1 ∧ h(R) = 1 ∧ L = R̄

]
,

and h(s) = 1 if n = 1. Here R̄ is the bit-wise negation of the right part. The last
condition means that the bit-wise xor between left and right part must be true
for each bit. For instance, the strings for which h(s) = 1 are, up to length 16,
〈0〉, 〈01〉, 〈0110〉, 〈0110 1001〉, 〈0110 1001 1001 0110〉, and their bit-wise negations.
Based on h, we define a fitness function H(s) ∈ N, for n ≥ 2,

H(s) = H(L) + H(R) +
{

n if h(s) = 1
0 else ,

and H(s) = 1 if n = 1. To normalize and put a limit on the string length, we
define the lth HXOR function Hl(s) ∈ [0, 1]: If s is longer than 2l, let s′ = s1:2l

and otherwise s′ = s. Then,

Hl(s) =
1

2l(l + 1)
H(s′) .

The normalization is given by the highest possible value 2l(1 + l) of H(s) for a
length 2l string. There exist two global optima of Hl, namely the two “valid”
strings of length l for which h(s) = 1.

Parameters. For the experiments, we use simple (µ,λ)-selection with population
sizes µ = 30 and λ = 100 and one elitist. The mutation probability (as indicated
in step 2.e of the algorithm) is α = 0.1. The population was initialized with all
〈01〉 individuals.

Results. We tested the algorithm on the HXOR problem. Figure 1A displays
the fitness trajectories for 20 runs on the 1024-bit HXOR problem. All runs
consistently found the optimal 1024-bit string. It took on average 519 generations
to reach this global optimum (with standard deviation ±168 generations).

Figure 1B displays the average first hitting generation and standard deviation
for different length HXOR problems, up to a problem size of 8192 bits. (Beyond



Table 1. A L-system found to compress a population of identical solutions to the
1024-bit HXOR. The full L-system is composed of 27 productions and reads 〈C:10,
D:1C, E:0D, F:CD, G:0F, H:EG, I:CH, J:CG, K:EI, L:EJ, M:LI, N:JK, O:NM, P:JM, Q:KO,
R:PO, S:KR, T:QS, U:QP, V:UT, W:SV, X:US, Y:PT, Z:PW, a:XY, b:VZ, c:ba〉. In the
table, we expanded the RHS of these productions and, for brevity, only displayed the
first 15 productions.

C:10
D:110
E:0110
F:1 0110
G:01 0110
H:01 1001 0110
I:1001 1001 0110
J:1001 0110

K:0110 1001 1001 0110
L:0110 1001 0110
M:0110 1001 0110 1001 1001 0110
N:1001 0110 0110 1001 1001 0110
O:1001 0110 0110 1001 1001 0110 0110 1001 0110 1001 1001 0110
P:1001 0110 0110 1001 0110 1001 1001 0110
etc...

that, exhaustive memory swapping slowed the algorithm too much down.) The
algorithm found the optimum in all runs for all problem sizes and the variance of
the first hitting generation is relatively small for a stochastic search scheme. The
diagram also shows that the number of generations needed to find an optimum
seems to grow linearly with the problem size.

To give an impression on the codings developed by the L-system compression
scheme, table 1 displays an L-system found to compress a population of identical
solutions to the 1024-bit HXOR problem. As discussed above, this compression
implements a full compression such that eventually every individual is repre-
sented by a single symbol c. We find that some productions represent the typical
modules of HXOR solutions (like E:0110 or J:1001 0110) while others represent
parts of these modules. Recall that the order in with productions are added to
the L-system is stochastic (cf. step 2.c). Consequently, the coding is not strictly
hierarchical as a human might have designed it (or DevRep, see below) and the
L-system comprises more pair-productions than minimally necessary to encode
the sequence of length 1024 (which is 19).

Generally, the performance of the algorithm—in terms of the generations
needed—is of the same order as the DevRep algorithm presented by de Jong
[7], which is the only previous algorithm we are aware of capable of solving large
HXOR problems. ([7] reported only on results for the 64-bit and 1024-bit HXOR
problem, where about 2.3·107 bit evaluations were needed in the single 1024-bit
run presented.) The DevRep algorithm is tailored to hierarchical problems,
where different hierarchy levels are explicitly distinguished and mutational vari-
ations allowed only within a specific hierarchy level. It should be clear that plain
variable length GAs perform extremely bad on the HXOR problem because of
its complex deceptiveness when search is performed on an atomic representation
(see [7] for experiments).

Notes on gzip. The compression scheme used is computationally very expensive.
We argue below that a proper solution might be a cumulative approach to find
compressions which are not recalculated in each generation. Alternatively, one
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Fig. 1. A. The trajectory of the best individual fitness for 20 runs on the 1024-bit
HXOR problem. One of the runs is drawn bold. B. First hitting generations, averaged
over 20 runs for each of the different HXOR problem sizes.



Table 2. The first line is the original string, composed of 15×abcd. The lines below
show 20 variations, generated by compressing the string with LZ-compression, applying
a single one-point mutation, and decompressing again. Dots indicate that the symbol
has not varied compared to the original string

abcdabcdabcdabcdabcdabcdabcdabcdabcdabcdabcdabcdabcdabcdabcd
.a...a...a...a...a...a...a...a...a...a...a...a...a...a...a..
..........................................d.ddabcdabcd
..............................................abdabcdabcd
........ddabcdabcddbcdd.dddbcddbcddbcddbcddbcdabcdabcd
.....................cabcdabcdac.caccdaccdaccdabcdabcd
......aabadabcdabaabcdab.dab.dabcdabcdab.aba..a...a...a.
........bcdabcdabcdbbcdbcdbcd.bcd.bcd.bcd.bcd.bcdabcdabcd
d...d...d...d...d...d...d...d...d...d...d...d...d...d...d...
......ab..a.......ab......a...a...........ab..ab..a...a...a.
............................................................
.................................cdacdaccdabcdabcdabcdabcd
......bc..b.......bc......b...b...........bc..bc..b...b...b.
........................cc.bcd.bcd.bcdabcdabcdabcdabcd
.............abcddaacdaabcd..........abcddaabcd..a...a...a..aacdaacd
...a...a...a...a...a...a...a...a...a...a...a...a...a...a...a
....dcd.cddbcddbcddbcddcdd..d...d...d...d...d...d...d...
...................................................bcdabcdab
.....................dabcabcdabcdadabca....adcdadcdadcdabcdabcd
............................................................
..................bcd.....................bcd.bcd.b...b...b.

might want to use efficient standard compression techniques, for example the
Lempel-Ziv compression as used by gzip. We performed some experiments also
with this compression algorithm.

However, LZ-compression has some instructive practical drawbacks. Let us
first consider to compress a single sequence, mutate it, and decompress it. The
symbol mutations of the compressed string have to obey some constraints such
that the compressed sequence remains a valid string that can be decompressed
by the LZ algorithm (the possible symbol range at each location is different).
Table 2 displays the result of 20 different one-point mutations on the compressed
representation. Here, a second issue about LZ-compression becomes apparent.
The mutations at the beginning of the string are less likely to be severe or
modular than at the end of the string. The reason is that LZ-compression is a 1-
pass scheme which builds up codes while parsing the string. In the beginning, no
codes have been build up yet and the string remains largely uncompressed. This
a priori asymmetry is very undesirable in the context of evolutionary exploration.
A possible trick is to concatenate the same string several times, compress the
concatenation, mutate only the part which represents the last copy of the string,
and decompress.

When implementing an algorithm, we exploited this observation. To compress
and mutate a single individual, we concatenated all individuals of the population
and additionally appended the individual of interest into a long sequence and
compressed it. In this manner, LZ-compression first uses the whole population
sequence to build up codes that are then used to compress the last individ-
ual. Then we mutated the compressed representation of the last individual and
decompressed it. A computationally very expensive scheme, again.



Experiments with the HXOR problem showed a very high variance in per-
formance between runs. For the 128-bit HXOR problem it frequently occurred
that runs never find the optimum while others find it within a few hundred
generations. Generally, the experiments with LZ-compression gave some impor-
tant insight in the relevance of how the codes are build up. They do however
not support the practical use of conventional LZ-compression for evolutionary
algorithms.

6 Discussion

Summary. The basis on which we developed the theoretical analysis was the
indirect Estimation-of-Distribution scenario, where a distribution over P is esti-
mated via a distribution over a genotype space G and an encoding φ : G → P .
The genotype distribution is restricted to factorize. Thus the problem of es-
timating a distribution is split into “decoding” the structural aspects of the
distribution (via compression) and then estimating the remaining structure-less
factorized distribution. The main result are Lemmas 1 and 2 relating the KLD
subject to minimization to the description length of the encoding.

The class of Compression EAs proposed in the last section are straight-
forward combinations of compression techniques with standard EA operators.
An algorithm based on a simple type of L-system compression performs reli-
ably well on the hierarchically deceptive HXOR function, which we tested up to
a problem size of 8192 bits. The number of generations needed seems to grow
linearly with the problem size.

However, the main aim of giving this explicit example for a Compression
EA was to introduce to the following discussion of two aspects that seem to be
important (i) when thinking about future, computationally efficient Compression
EAs and (ii) when considering the implications of the presented theory for the
understanding of natural evolution and the self-adaptive evolution of genetic
representations.

Cumulative compression. The L-system compression we used has properties that
proved beneficial in the experiments: unlike LZ-compression it is unbiased w.r.t.
which modules are encapsulated and it can develop arbitrary hierarchies. To re-
compute the compression from scratch at every generation also has advantages:
the encoding is always adapted to the current population, i.e. the currently avail-
able information about the problem, and the stochasticity of the compression
scheme leads to more diversity in exploration at different generations.

Clearly though, recomputing the compression at every generation is compu-
tationally very expensive. The general scheme of a Compression EA should thus
be modified to develop the compact encoding in a cumulative manner rather
than recomputing it at every generation. In the case of L-system compression,
cumulative could mean that the L-system is persistent over the generations and
at each generation only a single new production is added or an old, unused pro-
duction deleted. Assuming that the inherent structure of found solutions will



not evolve too fast, the cumulative scheme would still allow to provide a good
compression of the current population.

Besides being computationally much more effective, the cumulative approach
has another interesting perspective. Since the encoding is incrementally build up
during evolution, the encoding becomes a variable that integrates information
about the successful solutions over more than one generation. This is comparable
to strategy parameters in Evolution Strategies which, for instance, integrate the
average movement of the population over the recent history, assuming that this
search direction will also be profitable in the future [9]. Such schemes have hardly
been transferred to ordinary GAs because the notion of “proceeding in the same
direction” makes no sense on the hypercube. The notion does make sense though
on the more abstract level of “proceeding by incorporating the same structural
dependencies that have previously been successful”—where the notion of “search
direction” is replaced by the notion of “structural properties of search”. The
encoding becomes the variable which is capable to integrate such information.
The objective of compactness indicates how an adequate permanent adaptation
can be achieved.

Self-adaptive σ-evolution of compact representations. In this work we addressed
a bijective encoding φ that is adapted explicitly (externally) at each generation.
This approach is complementary to the formalism we proposed earlier to describe
the self-adaptive evolution of genetic representations [22, 21]. The proper way to
formalize the self-adaptive case is to consider a fixed but non-injective genotype-
phenotype mapping. In that case there exists a variety (neutral set) of different
genotypes that map to the same phenotype. The “choice of genetic represen-
tation” here means which genotype from the neutral set is chosen to encode
the phenotype. The specific example investigated in [20] clarifies the relation
between the two complementary frameworks: A genotype in the self-adaptive
scenario may be the tuple (g0,Π) of a (compact) string g0 (termed axiom, or
egg cell) and an L-system Π (termed genome). The global genotype-phenotype
mapping from the space of such tuples to phenotype is clearly fixed. But differ-
ent genotypes, involving different L-systems Π, may map to the same phenotype
and thus induce structurally completely different phenotypic variabilities. In this
scenario, the evolution of genetic representations can be understood as moves in
the neutral set, e.g., neutral reorganizations of the L-system Π.

In [22] it was show that the self-adaptive evolution of genetic representations
is driven by an implicit selection which discriminates phenotypically equivalent
genotypes by the quality of the phenotypic variability that they induce (which is
related to the effective fitness [14, 19]). More precisely, the selectional advantage
of different genetic representations of the same phenotype is proportional to the
negative Kullback-Leibler divergence between the phenotypic variability and the
Boltzmann fitness distribution (assuming a lower bound on phenotypic entropy,
see [22] for details).

The objective of minimizing the Kullback-Leibler divergence is thus the key
to transfer the results we derived here to the self-adaptive scenario, now stat-
ing that there is an effective selection pressure on the description length of a



genetic representation. Indeed, a tendency towards compact representations was
observed in experiments on σ-evolution [20]. It was previously argued that its
origin is the advantage of mutational robustness when every genetic symbol un-
derlies a constant mutation rate. We can now add another origin, namely that
compact representations are structurally more favorable—meaning that the phe-
notypic variability they induce allows to reduce the Kullback-Leibler divergence
and follow the Estimation-of-Distribution principle. However, it is yet open to
which degree both effects contributed to the evolution of compact codes.
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