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Abstract
We consider problems of sequential robot manip-
ulation (aka. combined task and motion planning)
where the objective is primarily given in terms of a
cost function over the final geometric state, rather
than a symbolic goal description. In this case we
should leverage optimization methods to inform
search over potential action sequences. We pro-
pose to formulate the problem holistically as a 1st-
order logic extension of a mathematical program: a
non-linear constrained program over the full world
trajectory where the symbolic state-action sequence
defines the (in-)equality constraints. We tackle the
challenge of solving such programs by proposing
three levels of approximation: The coarsest level
introduces the concept of the effective end state
kinematics, parametrically describing all possible
end state configurations conditional to a given sym-
bolic action sequence. Optimization on this level
is fast and can inform symbolic search. The other
two levels optimize over interaction keyframes and
eventually over the full world trajectory across in-
teractions. We demonstrate the approach on a prob-
lem of maximizing the height of a physically stable
construction from an assortment of boards, cylin-
ders and blocks.

1 Introduction
Consider the following problem: “Given an assortment of
boards and cubic and cylindrical objects, and a cup, maxi-
mize the height of the cup in the final configuration. You are
allowed any sequence of interactions with the environment,
but eventually the cup should be placed stably without hav-
ing it in the hand in the final configuration.” A solution to
this task might be to build a high, stable construction from
the given objects and place the cup on top. Or simply place it
on a high cabinet, in case there is one around. But crucially,
the objective is given only in terms of an evaluation function
of the final configuration and potential control costs.

Solving such tasks requires an integrated approach to joint
logic and geometric reasoning—which we think is a core
challenge in the intersection of AI and robotics. There re-
cently have been very impressive advances on combined task

and motion planning (TAMP), which we review below. For
instance, Srivastava et al. [2014] have proposed a general ap-
proach for interweaving existing symbolic planners (e.g., for
tasks describable in PDDL) with existing geometric planners
(e.g., RRTs) to check the geometric feasibility of the actions
proposed by preliminary symbolic plans.

The specific methods we propose in this paper are (yet!) in
many respects less efficient than existing TAMP approaches;
in particular we cannot scale to similar depths (action se-
quence horizons) of symbolic planning. However, it would
be hard to make existing TAMP methods fit to solve the tasks
mentioned above. First, we aim for planners that can deal
with arbitrary objective functions ψ(x(T )) on the final geo-
metric configuration x(T ) and overall control costs. In spe-
cial cases it might be possible for the human expert to intro-
duce symbols to reflect the objective; but we want to avoid
this. Most existing TAMP approaches, however, require a
well-defined task planning problem including a symbolic goal
description. Further, the above problems are inherently opti-
mization problems, not constraint satisfaction problems.

In this paper we therefore propose an approach that roots
in a mathematical programming formulation. We think of se-
quential manipulation as a special kind of logic-geometric
program (LGP). Let us first sketch what we mean by an
LGP in general: Given are a logic L, a knowledge base
K ∈ L, and an objective function f(x) over a continuous
object x ∈ X . Assume that any α ∈ L defines constraint
functions g(x|α) : X → Rd(α) and h(x|α) : X → Re(α),
where the number of constraints (dimensionalities d(α) and
e(α) of g and h, respectively) also depend on α. Then a logic-
geometric program1 is

min
x,α

f(x, α) s.t. α |= K, g(x, α) ≤ 0, h(x, α) = 0 (1)

In the case of manipulation, x will be the full path of all ob-
jects and the robot across object interactions. The role of the
symbolα is to define geometric and differential constraints on
this path, e.g., constraints implied by the symbolic decision to
make an object movable (grasp it). In this way our approach
utilizes the symbolic level to structure the optimization over
paths of all involved objects—in terms of the constraints that
symbolic decisions imply within the mathematical program.

1We could actually drop calling it “geometric”, but want to ex-
press our hope that it is particularly useful for geometric reasoning.



Thereby, in contrast to previous TAMP approaches to robot
manipulation our formulation provides a notion of global op-
timality over the full (logic and geometric) sequential manip-
ulation.

Clearly, computing a globally optimal solution to the pro-
gram will be infeasible. The most interesting research ques-
tions concern how to tackle it in a feasible way. In this
paper we propose three levels on which geometric reason-
ing (that is, optimization over geometric configurations and
paths) may inform symbolic search towards a joint optimum.
All three levels raise novel interesting challenges for motion
(or configuration) optimizers. The highest level, which plays
the crucial role of the heuristic for informed search, is perhaps
most interesting and will optimize over the end configuration
conditional to a symbolic action sequence. For this, we have
to analyze the space of possible object configurations that can
be reached with a given symbolic action sequence (an action
skeleton in the sense of [Lozano-Pérez and Kaelbling, 2014]),
leaving free the geometric parameters of all actions. We call
this the effective end space. Optimizing over this space is a
form of geometric reasoning which can account for any ge-
ometric features that define ψ(x(T )), including for instance
the stability of a construction. Roughly, it “moves” the ob-
jects in the final construction into place to maximize (e.g.)
stability—and thereby informs also the early actions in the
action sequence on how to place objects to account for the
temporally delayed effect of stability of the final construc-
tion. We think that this kind of “backward regression” of geo-
metric information is non-existent in the planners of previous
formulations. Besides the novel formulation of manipulation
planning as an LGP, we think of the concept of the effective
end space and its optimization as a search heuristic as the core
contributions of this paper. The other two levels of exploit-
ing geometric optimization concern (approximate) path opti-
mization. This implies the challenge of motion optimization
across kinematic switches of the world configuration (across
action boundaries) to allow for the optimization over the full
manipulation sequence. We detail our contributions on this
later.

In the following section we discuss related work. Section 3
introduces to the problem formalization. Section 4 discusses
our proposed solver, and section 5 experiments on building a
stable construction that is as high as possible.

2 Related Work
2.1 Combined Task and Motion Planning
We first focus on TAMP approaches to robot manipula-
tion. The approach of Lozano-Pérez and Kaelbling [2014]
is strongly related to ours, but eventually aims to reduce the
problem to a CSP instead of a continuous mathematical pro-
gramm. They introduce the notion of an action skeleton,
which is a sequence of symbolic actions leaving their spe-
cific geometric parameters unspecified. As in our approach,
the decisions on the geometric parameterization of actions are
deferred to a stage where the skeleton has been fixed. How-
ever, they argue that “The constraints from a plan skeleton are
significantly nonlinear and much too complex to solve exactly
analytically in continuous form”. While we agree that an ana-

lytic solution is out of reach, it is exactly the aim of this paper
to formulate the problem as a continuous mathematical pro-
gram that can be solved (locally) optimally using constrained
optimization methods. Lozano-Pérez and Kaelbling [2014]
rely on discretizing the geometric parameters of a skeleton.

The approach [Lozano-Pérez and Kaelbling, 2014] is re-
lated to [Lagriffoul et al., 2012; 2014], who also employ
CSP methods (constraint propagation) to resolve geometric
constraints. Siméon et al. [2004] describe complex, multi-
interaction planning of the manipulation of a single object,
but does not bridge to relational/logic representations of en-
vironments with many objects.

Garrett et al. [2014] addresses the problem in a way that
uses symbols (CanGrasp and Reachable) to represent
geometric preconditions for actions also on the symbolic
level. These predicates depend on the actual geometric con-
figuration; their approach again samples configurations to
discretize such continuous variables. Similar to this, Sri-
vastava et al. [2014] devise a symbolic description that in-
cludes predicates to abstract geometric feasibility conditions
and represent action operator preconditions on the symbolic
level. For a given task plan, the predicates are evaluated on
demand, as well as the Obstructs predicate added depend-
ing on which objects make a path finder fail. Similar kind
of backtracking depending on geometrical reasoning is also
the core idea in [Pandey et al., 2012; de Silva et al., 2013;
Alili et al., 2010]. Other non-optimization based planners
are [Sucan and Kavraki, 2011], representing motion options
in a task motion multigraph, and [Plaku and Hager, 2010],
sampling-based motion and symbolic action planning under
differential constraints.

In summary, these TAMP approaches to robot manipula-
tion assume a symbolic goal description in their demonstra-
tions. None explicitly aims to optimize a final configuration
that is evaluated only by an objective function.

From a higher level perspective, previous TAMP ap-
proaches to robot manipulation typically introduce predicates
to represent geometric conditions or features (including the
existence of feasible paths). These are necessary as precondi-
tions of action operators. The evaluation of these predicates
(on demand) then calls geometric motion planning methods
like subroutines. The general idea to introduce the “right”
symbolic abstractions of geometry such that one can then rea-
son only on the symbolic level (modulo calling subroutines
to evaluate the symbols) is intriguing, as symbolic reasoning
seems so much more efficient than geometric. But this im-
plies the fundamental and long-standing question of what are
the right symbolic abstractions. Instead of trying to repre-
sent geometric constraints (or other geometric aspects) on the
symbolic level, the logic-geometric programming approach
aims to tackle optimization problems directly on the geomet-
ric level, where the role of logic is to control the constraints
in the mathematical program. Expressed differently: instead
of trying to pull geometry into logic representations, we try to
pull logic into mathematical programming.

Outside the domain of robot manipulation, the Kingming
planner of Li and Williams [2008] reduces a mission plan-
ning problem for an autonomous unverwater vehicle to a
mixed logic nonlinear program (MLNLP). This approach in-



deed proceeds ours in using logic in a mathematical program-
ming formulation of the mission problem. However, the ap-
proach is not applicable to object manipulation and movable
objects. Further Ivankovic et al. [2014] formulate, e.g., power
supply restoration problems in a way where symolic variables
imply constraints on continuous optimization problems, as is
the case in ours.

2.2 Trajectory Optimization Across Manipulation
[Mordatch et al., 2012] presented an impressive method for
optimizing full manipulation trajectories, based on a contact-
invariant optimization approach that originated in locomotion
research. The resulting trajectories are very smooth (though
contact constraints of grasps seem not accurately fulfilled).
The approach however relies on rather precise descriptions
of the desired movement of objects; task planning, or task-
motion planning that optimizes over features of the final con-
figuration seem out of scope for this method. Equally impres-
sive, but not aiming at sequential manipulation planning, are
recent methods on trajectory optimization through contacts
[Posa et al., 2014]. This paper also extensively discusses re-
lated literature from the area of locomotion, which is an area
that early on had to deal with trajectory optimization through
kinematic switches of the configuration.

Finally, let us mention qualitative state plans [Hofmann
and Williams, 2006] as an approach that also aims to re-
duce sequential task planning and control to mathematical
programming. However, to our knowledge these have not yet
been applied to object manipulation tasks.

3 Problem Formulation
We first introduce the specific problem formulation addressed
in this paper and below discuss in what sense this is a spe-
cial case of what we consider a logic-geometric program. Let
x : [0, T ]→ X be a path in the configuration space X of the
whole environment, including the robot and all object con-
figurations. We can explicate X = Rn × SE(3)m for an
n-dimensional robot interacting with m objects—but we will
never need to parameterize this full space explicitly. We as-
sume the initial configuration x(0) given. Complementary to
the path, the problem formulation is in terms of a first-order
logic L, an initial state s0 ∈ L, and a sequence of T action
operators that transition the logic state as sk = succ(ak, sk-1).
Further, let tk ∈ [0, T ], k = 1, ..,K be K points in time. We
consider the program

min
x,a1:K ,s1:K ,t1:K

∫ T

0

c(x(t), ẋ(t), ẍ(t)) dt+ ψ(x(T )) (2)

s.t. ∀k=1:K sk = succ(ak, sk-1) (3)
sK |= g (4)

∀Kk=1 hswitch(x(tk) | ak, sk-1) = 0

∀Kk=1 gswitch(x(tk) | ak, sk-1) ≤ 0
(5)

∀t∈[0,T ] hpath(x(t), ẋ(t) | sk(t)) = 0

∀t∈[0,T ] gpath(x(t), ẋ(t) | sk(t)) ≤ 0 .
(6)

Eq. (2) is a typical optimal control objective on a path, with
running costs c and an evaluation ψ of the final configura-
tion. However, this optimization is w.r.t. a series of equality

and inequality constraints. It is the role of the logic to define
these constraints on the path. The constraints (5) concern the
consistency of the switch configuration x(tk) with the action
operator ak. The constraints (6) imply (geometric & differ-
ential) constraints on the path x(t) depending on the current
symbolic state sk(t), where k(t) = max{k : tk ≤ t} (such
that t ∈ [tk(t), tk(t)+1]) and we assume that time points tk
increase with the step count k.

Recall that, in the general context of classical mechanics,
the term kinematics refers to the description of the possible
motions of a system. In that sense, equation (6) says that sk
defines the path kinematics in the interval [tk, tk+1]. Let us
give an example: consider an n-dimensional robot2 in an en-
vironment with m objects. At any point in time, the world
configuration kinematics will only span an n-dimensional
space. However, which degrees of the world configuration are
actually actuated crucially depends on what the robot is inter-
acting with, whether it has an object inhand ( pose equal-
ity constraint), pushes a drawer with a finger tip ( ball-
joint equality constraint and velocity inequality constraint),
etc. Our approach of problem formulation fundamentally im-
plies that symbols need to represent exactly these categorial
aspects of the world configuration kinematics in equation (6):
State symbols define kinematics.

If state symbols fundamentally define the system kinemat-
ics, then action operators correspond to kinematic switches.
Examples are the establishment of a grasp, or a push contact,
or the releasing of an object. This clarifies why we call x(tk)
a switch configuration. The constraints (5) need to ensure ge-
ometric consistency with the assumption that x(tk) describes
a grasp pose, push contact, or object release.

The fact that the world configuration kinematics are always
only n-dimensional also allows us to represent the path x(t)
only as an n-dimensional path—but together with a descrip-
tion of the configuration kinematics, including the (fixed) rel-
ative transformations between objects that are implicit in the
kinematic switches. The following sections will explain this
in more detail.

Finally, equations (3) requires that ak are action operators
that generate a sequence of states sk ∈ L and, optionally,
(4) requires that the final state entails a symbolic goal. Such
given symbolic goals are the standard in previous approaches
to integrated task and motion planning. We will not consider
such a symbolic goal and instead focus on how to plan when
“goal information” is implicit only in the evaluation of the
final world configuration.

4 Solver: Boiling Down the Problem on Three
Levels

Our general approach is to alternate between search over
symbolic action sequences and optimization over configura-
tions or paths conditional to such symbolic decisions. Crucial
for the efficiency is how we exploit geometric information to
inform the symbolic search, especially if the task objective is
solely given in terms of an evaluation function ψ(x(T )) of the

2A robot with n actuated joints.



final configuration. We propose three levels of approximation
for this:
• We optimize only over the final configuration x(T ) con-

ditional to a given action sequence a1:T . What ’condi-
tional’ really means requires to understand the ’effective
end space’, which we discuss in detail in the next sec-
tion. This optimization over x(T ) is very fast and suit-
able as a search heuristic.
• We optimize jointly over all switch configurations
{x(t) : t = t1, t2, .., tK , T} conditional to a given ac-
tion sequence a1:K . This computes explicit geometric
instantiations of the action operators and optimizes the
respective configurations to account also for long-term
effects, e.g., optimizes over a grasp pose at t = t1 to
minimize also costs that arise several time steps later due
to the choice of grasp pose.
• We optimize over the full path x : [0, T ] → X condi-

tional to a given action sequence a1:K . This requires
methods for trajectory optimization able to cope with
kinematic switches.

Readers familiar with [Srivastava et al., 2014] or [Lozano-
Pérez and Kaelbling, 2014] may criticize that in this stag-
ing the geometric feasibility of an action operator (e.g., the
existence of a path for a grasp) is checked only on the 3rd
and most costly level, optimizing over the full path. It is
true that the previous approaches use proper feasibility check-
ing (RRTs) of sub-paths in a more integrated way to inform
search over action sequences. It is not the primary focus of
our approach to deal with scenarios where obstacle avoidance
is the major challenge. In our demonstrations, any object
is reachable with the first action—but whether it should be
reached depends on ψ(x(T )).

4.1 Level 1: Optimization Over the Effective End
Space

We define the effective end space X ∗(a1:K) ⊆ X as the set
of all configurations x(T ) that can be reached with a given
action sequence a1:K , informally:

X ∗(a1:K) = {x(T ) ∈ X | a1:K} . (7)

We discuss in the following more precisely what this condi-
tioning on the action sequence means, by giving an example,
discussing X ∗ as the projection of action skeleton parameters
onto the end state, and introducing our specific construction
of the space.

Consider a 2-step action sequence where a1 picks up an
object A from a table, and a2 places it back on the same ta-
ble B. In typical symbolic representations, the states before
and after a1:2 are the same; while geometrically the object
may have been placed at another location on the table. In the
skeleton perspective, the new object location is a parameter
of the action skeleton, specifically of a2. However, we may
think of the new object location also as a free parameter of
the final configuration x(T ). We want to capture this also in
the symbolic state sK , that is, also symbolically represent that
there is a significant difference between before and after the
manipulation. We do so by designing rules (for a2) that aug-
ment the state with a movable predicate for the manipulated

object. In our example, after the sequence we have state pred-
icates movable(A) and on(A,B), which together translate
to a 3D (x, y, ϕ)-translation-rotation joint between object A
and table B and additional inequality constraints that ensure
stability of the object placement on the table. In that way,
the symbolic state sK fully defines the effective end space
X ∗(a1:2).

We discussed earlier that our problem formulation inher-
ently requires the symbolic representation sk to be sufficient
to define the kinematics of the world configuration x(t) in
the interval t ∈ [tk, tk+1] (geometric & differential constraints
(6)). Now we additionally require that sk is a sufficient repre-
sentation to define the space X ∗(a1:k), which we may think
of the effective kinematics of the end configuration x(T ).
This “effective kinematics” describes how objects in the end
configuration can be “moved” by different choices of action
skeleton parameters.

An illustrative example, that we will also consider in the
experiments, is the construction of a physically stable tower.
Consider multiple blocks of different sizes, and boards that
can be placed on top of multiple blocks. To maximize stabil-
ity of the final tower we should place multiple large blocks
of similar height in the bottom, a board on top, ensure that
the supporting blocks span a maximal support polygon, then
place multiple blocks on the board, and so on. Choosing
the right placement of blocks for later stability is a long-
term planning problem. However, if we can project these
choices into the final configuration, thinking of all objects
movable subject to the structural constraints, this problem
can be solved by optimizing only over the final configura-
tion x(T ) in the end space X ∗. Note that the dimensionality
of X ∗ is typically lower than the number of all skeleton pa-
rameters: a grasp action a1, for instance, has 6 grasp pose
parameters. But if it is followed by a place it might project
to only 3 degrees of freedom (DoFs) in X ∗ (assuming the up-
rightness of the object is unchanged, and the resulting DoFs
are the objects (x, y, ϕ)-coordinates on the base).

Optimization over x(T ) ∈ X ∗ is a standard parametric
constrained (non-linear) optimization problem, just as typical
robot pose optimization problems, which can be efficiently
solved (in our case within about 100 msecs for 40 objects)
and used as a heuristic to guide symbolic search. Clearly, op-
timization in the end space is only an approximation to the
optimization of the full path as it neglects constraints3 and
costs arising from actually moving these objects into place.
The following section addresses this.

4.2 Levels 2 & 3: Optimizing Across Kinematic
Switches

Optimizing trajectories across switches in the system kine-
matics is challenging due to long-term dependencies. For in-
stance, assume there is a cost gradient w.r.t. an inhand-object
pose at some time slice t2. However, the pose of the inhand-
object not only depends on the current robot joint angles qt2 ,
but also on the robot joint angles qt1 at the time t1 of grasp-
ing, which determined the rigid hand-object transformation.

3Note that neglecting constraints, or mutexes, is one of the core
sources of finding heuristics for AI planning in general.



These long-term dependencies need to be accounted for to
compute a correct trajectory gradient. Methods to cope with
such problems are rare.

We address this based on our k-order motion optimization
framework (KOMO) [Toussaint, 2014], where the problem
over a time discretized trajectory x0:T is of the form

min
x0:T

∑T
t=0 ft(xt−k:t)

>ft(xt−k:t) (8)

s.t. ∀t : gt(xt−k:t) ≤ 0 , ht(xt−k:t) = 0 , (9)

where ft are cost terms that approximate the control costs
in the interval [t − k, t] as a sum-of-squares over cliques
xt−k:t = (xt−k, .., xt−1, xt), and gt and ht define constraints
over these cliques. By choosing k = 2 we can penalize and
constrain arbitrary features of positions, velocities and accel-
erations. This problem form lends to highly efficient Gauss-
Newton methods (within an Augmented Lagrangian loop) ex-
ploiting the band-diagonal structure of the pseudo-Hessian
that arises from the chain structure; see [Toussaint, 2014] for
details.

In a direct representation, the above mentioned long-term
effects of kinematic switches break the banded structure of
Jacobians and band-diagonal structure of the Hessian, loosing
all the nice properties of KOMO.4 We decided to circumvent
this problem by augmenting the robot manipulator with a vir-
tual manipulation frame with a free 6DoF joint between hand
and this manipulation frame, and define xt ∈ Rn+6. A grasp
action translates to a 6D equality constraint between manipu-
lation frame and object frame (in Eq. (5)). We further impose
zero velocity constraints on the relative grasp reference frame
(object-hand pose) as long as an object is inhand.

To further simplify the trajectory optimization we impose
equality constraints on the placement of objects when they
are manipulated for the last time: we require their pose to
be equal to the one computed by level 1 optimization. Fur-
ther constraints concern standard motion optimization aspects
such as collision avoidance. Control costs are squared accel-
erations.

We use this framework for both, level 2 and 3 optimization.
When only optimizing over the keyframes (level 2) we choose
a path discretization that only includes the keyframes; for
the full path optimization we include 20 time steps between
keyframes initialize the path optimization with an interpola-
tion of the previously optimized keyframes. The keyframe
optimization also provides a faster way to prune out action
sequences (if no keyframes can be found that could gen-
erate the required grasp and place poses under geometric
constraints). Concerning the optimization over time points
t1, .., tK : in the experiments we will require zero accelera-
tions at all keyframes, such that the real time duration of each
interval [tk, tk+1] can be chosen independently and trivially
after the path optimization.

4.3 Symbolic Search
In our current implementation of the overall system we only
use basic Monte Carlo Tree Search (MCTS) to search over

4Dealing carefully with the non-banded Jacobians and neglecting
the respective off-diagonal blocks in the Hessian is feasible, but in
our experience overly complex and not efficient.

Figure 1: Typical initial configuration.

action sequences a1:K . We put substantial effort in efficiently
computing the combinatorial set of all feasible actions (unifi-
cations of action rule preconditions with the state, using CSP
methods) at every node of the tree, as this crucially decides
on how the computation of rollouts scales with the number of
objects. Still, plain MCTS is surely is less efficient than the
existing TAMP approaches mentioned previously. Our focus
is on efficient engines for the above described optimization
problems.

We use a rule based representation of symbolic transitions
sk = succ(ak, sk-1). In each iteration of MCTS we unroll
full action sequences a1:K purely symbolically, then optimize
x(t) ∈ X ∗(a1:K) w.r.t. ψ(x(T )) (including constraints on
the final configuration). For the best of all generated final
configurations we perform level 2 optimization and, if still
feasible, level 3 optimization and eventually return the best
solution (x, a1:K , s1:K) found.

5 Experiments
We evaluated the approach on the problem of creating a stable
construction from a random set of assorted boards and blocks,
maximizing its height.

We defined ψ(x(T )) to quantify the stability and height of
a construction: When a board is placed on multiple blocks,
we maximize the spread of blocks subject to being within the
boundary of the board, and reward the number of blocks a
board is placed on. When it is placed on only one block we
penalize non-centering. When blocks are placed on a board,
we reward more central positionings. For brevity, we provide
a detailed definition of ψ(x(T )) and quantitative results on
achieved scores in an appendix on the author webpage.

Concerning optimization over the full manipulation path,
we abstracted the robot as a 3DoF arm mounted on a floating
base. We did not consider articulated fingers and optimize
over finger motions for grasping as this is unrealistic to trans-
fer to real-world. Instead we optimize the grasp pose (the rel-
ative object-hand pose), assuming that a compliant real-world
gripper could perform the actual grasp. The concrete switch
constraints hswitch, gswitch used in the experiment concerned
non-collision (inequality), equality of grasp frame with ob-
ject frame, and (in case of the last manipulation of an object)
equality of the place pose with the final pose. The geometric
and differential constraints hpath, gpath implement zero ve-
locity of the object-hand pose while inhand, zero velocities
and accelerations during pick and place, and non-collision.
The control costs penalized accelerations and implemented
a weak prior for the robot arm to be in the homing posi-



Figure 2: Samples of optimized end state configurations. Right: Snapshot of an optimized smooth full manipulation trajectory.

tion throughout (implying a useful preference to reach from
above).

Figure 1 displays a typical initial configuration where the
number of objects, their type and size of boards are random-
ized and initially placed on the grand table. They are to be
assembled on the small table. Figure 2 displays typical found
end configurations.

Figure 3(a) displays data on the run times on a 2.8GHz
DualCore laptop for the generation of a single MCTS roll
out and a single optimization over the end space configura-
tion, depending on number of objects in random problem in-
stances. Even for up to 100 objects—implying up to 200 pick
and place manipulations and hundreds of effective DoFs in
the end configuration—optimization over the end space re-
mains below 1 second. For moderate number of objects it
is from 10 to 100 msecs. Both methods are fast, effective
optimization over the end space is an efficient evaluation of
rollouts, and we can compute optimization configurations as
those illustrated in Figure 2.

Figure 3(b) displays computation times for keyframe and
full path optimizations for random problems. Note that the
number of keyframes is the number of manipulations, roughly
equal to twice the number of objects. Further, the paths have
20 time steps per manipulation; for 25 objects this is a (15-
dimensional) trajectory with 1000 time steps across 50 ma-
nipulations. Concerning keyframe optimization we can see
some outliers with more than 30-40 seconds—these are ex-
actly cases of infeasible manipulations where we have to
discard the action sequence. The resulting trajectories are
smooth and collision free (if keyframe optimization indicated
feasibility) and generate the optimized end state. Figure 2-
right shows an example of the manipulator in action in some
later phase of the assembly.

The example demonstrates success on our construction
problems, leading to (locally, approximately) optimal full
manipulation paths across up to 50 manipulations. We are not
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Figure 3: Running times of (a) a single MCTS rollout and a
single end space optimization and (b) a keyframe optimiza-
tion and full path optimization.

aware of existing methods that could address such problems
in this form.

There is no doubt that existing TAMP approaches could
solve an analogous feasibility problem if the objective was
instead encoded in a symbolic way. But this demonstration
shows that such problems can be solved also when the ob-
jective is given in terms of an objective function ψ(x(T )),
and that formulating the problem as an integrated optimiza-
tion problem allows us to leverage optimization methods to
find (locally, approximately) optimal solutions.



6 Conclusion & Outlook
We proposed a new, optimization-based approach to sequen-
tial manipulation planning. Efficient optimization over the
vast space of all possible manipulations crucially requires
heuristics to inform search over the symbolic aspects. We
proposed three levels for this: optimization over the end space
only, over the grid of switch configurations, and over the full
path. The first two levels neglect costs and constraints arising
from the full path, making them faster heuristics to inform
search. Other than previous TAMP methods for robot ma-
nipulation the approach can handle problems that lack a sym-
bolic goal description and aims to provide optimal solutions
instead of only feasible.

More generally, we believe that fundamental research on
bridging between mathematical programming and first-order
logic representations seems very fruitful. Choobineh [1992]
proposed this, and Borkar et al. [2002] inversely proposed re-
ductions of (higher-order) logical inference to extensions of
mathematical programming (these extensions being similar
to relational mathematical programs). It would be fascinating
to see whether potential future solvers of general relational
mathematical programs can be a basis for efficient manipula-
tion planning methods in robotics.
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A Specifics of ψ(x(T )) for the tower problem
On my webpage you may find the cpp file
source-code/15-LGP-endStateOptim.cpp
that defines the ψ(x(T )) function used in this paper—this is
only for reference. If you want a (non-cleaned) copy of the
code snapshot that generated the experiments, contact me.
(The code is far from being a library for users.)

In the tower problem, whether a stack of objects is physi-
cally stable depends on how objects support each other. In our
symbolic representation sK of the final configuration we in-
clude predicates (support X Y) whenever object X sup-
ports object Y (from below). Our design of the objective
function ψ(x(T )) mainly investigates these supports. A pre-
cise quantification of stability would consider the forces ex-
erted by the supports. In contrast, here we define easily differ-
entiable heuristics: If a board is supported by multiple blocks
we maximize their spread, subject to being within the bound-
ary of the board. We reward if a board is placed on more
blocks and penalize non-centering of supports.

The ψ(x(T )) in fact defines a constrained mathematical
program in the following convention: ψ is a vector valued
function, where every component of ψ either defines (i) a
sum-of-squares term, (ii) an equality constraint, or (iii) an in-
equality constraint. The NLP is then

min
x

∑
i:ti=sos

ψi(x)
2 s.t. (1)

∀i:ti=ineq ψi(x) ≤ 0 , ∀i:ti=eq ψi(x) = 0 , (2)

where ti indicates the term’s type. Following the order of the
source code, the terms included in ψ(x(T )) are:

• For every predicate (supports X Y) we add 4 in-
equality constraints to ψ, which represent the fact that
object Y should be within the support area of object X .
We first compute the “range” of allowed xy-coordinates
of Y relative to X (which depends on the size of X),
then add two inequalities to the problem for each dimen-
sion. The inequalities are scaled by a factor 10 (which
should not influence the optimum, but the convergence
behavior).

• For every object X that has n ≥ 2 supporters we add n
sum-of-square terms to ψ, which represent the distance
of each supporter to the supporters’ center, where n is
the number of supporters. We first compute all locations
of all supporters, and the center as their mean location.
As we want to maximize the distance (the spread of sup-
porters) we then add the sum-of-square term 0.3∗(1−d),
where d is the supporter’s distance to the center in me-
ters (and always < 1).

• For every object X that has n ≥ 1 supporters we add
three sum-of-square terms to ψ, which is equal to the 3D
distance d between the supporters’ center and the center
of X .

• We add exactly the same terms as described by the two
previous bullet points for all objects above every object
X .

The above describes the objectives in the geometric NLP
for a given symbolic final configuration sK . To select be-
tween symbolic decisions we additionally reward r = 10h+
S, where h is the height of the highest piece, and S counts
how many supporters each object has: For each object X
we add 0.2n2 to S, where n is the number of supporters of
X . The selection criterion between tower structures is then
r − f , where f =

∑
i:ti=sos ψ

2
i are the sum-of-square costs

of the NLP.
Although absolute numbers have little semantics, the typ-

ical costs f for optimal(!) towers range around [.1, .8], but
increases drastically for non-optimized geometries or infeasi-
ble configurations. The height and support reward r is in the
order of 10 or higher, depending on the number of objects.


