Abstract
We consider the scenario where a robot is demonstrated a manipulation skill once and should then use only few own trials to learn to reproduce, optimize and generalize that same skill. A manipulation skill is generally a high-dimensional policy. To achieve the desired sample-efficiency we need to exploit inherent structure in this problem. With our approach we propose to decompose the problem into analytically known objectives, such as motion smoothness, and black-box objectives, such as trial success or reward depending on the interaction with the environment. The decomposition allows us to leverage and combine (i) constrained optimization methods to address analytic objectives, (ii) constrained Bayesian optimization to explore black-box objectives, and (iii) inverse optimal control methods to eventually extract a generalizable skill representation. The algorithm is evaluated on a synthetic benchmark experiment and compared to state-of-the-art learning methods. We also demonstrate the performance on real robot experiments with a PR2.

Keywords
Combined Optimization and Learning, Reinforcement Learning, Imitation Learning, Manipulation Skills

1 Introduction
Manipulation skills share the common goal to control external degrees of freedom of the environment into a desired state. Coding a policy that controls the internal degrees of freedom of a robot for such manipulations is non-trivial. A main issue is that the external degrees of freedom can only be manipulated through contacts, which are difficult to plan since a precise and detailed physical interaction model is often not available. This issue motivates the use of learning methods for manipulation skills that allow robots to learn how to manipulate the unknown environment. In the last decade, many impressive applications of learning methods in robotics could be accomplished (e.g., aerobatic helicopter flight (Abbeel et al. 2007), robot table tennis (Muelling et al. 2013) and quadruped locomotion (Theodorou et al. 2010)). In this work, we investigate how such learning methods can improve manipulation skills to achieve a higher performance and wider generalization abilities.

We propose a combination of optimal control, episodic reinforcement learning and inverse optimal control techniques to eventually learn a cost function representation of manipulation skills starting from a single demonstration. The initial demonstration is a trajectory for a particular skill scenario, which is used as a starting point for different learning methods. We design the learning methods in such a way that they exploit the common structure of manipulation skills. A key element of this structure is that external degrees of freedom are manipulated through contacts. These contacts play an essential role for the success of manipulation skills. For the remaining parts we use analytic motion optimization methods and keep the projection fixed. We finally use the data we collect with rollouts in an inverse optimal control method to acquire a higher-level skill representation that generalizes to different scenarios.

1.1 Assumptions and Overview
Learning manipulation skills is in general a very difficult problem. One reason is that models about the environment are only partially known. The geometric shape of the environment can usually be obtained from different sensors. However, it is more difficult to estimate the precise kinematic structure of the environment and how to manipulate it through contacts. Another reason is that it can be dangerous to apply learning methods when contacts are involved, since they could damage the robot or the environment.

One way to reduce these difficulties is by exploiting the problem structure and by putting prior knowledge into the learning process. We provide a demonstration of the skill as initialization of our method, which is used as a starting point for improving and generalizing the skill. We also restrict our problem class by making the assumption that the environment only consists of rigid bodies that are connected by joints. Another assumption we make is that the success of a skill only depends on a low-dimensional projection of the full motion. We define this projection as the interaction (e.g., contact points, external degrees of freedom) with the environment.

Machine Learning & Robotics Lab
University of Stuttgart, Germany

Corresponding author:
Peter Englert, Universitätsstraße 38, 70569 Stuttgart, Germany
Email: peter.englert@ipvs.uni-stuttgart.de
Figure 1: Overview of our skill learning approach.

With respect to smoothness and force efficiency. The low-dimensional projection is here defined as the force during the opening and the rotation angle of the door knob. Afterwards, we use the acquired trajectory data to learn a cost function that allows the robot to generalize the skill to different initial robot states (see Figure 6(d)) and desired door states (see Figure 6(e)).

1.2 Contributions and Structure

The goal of our skill learning approach is to find a policy that has a high performance and generalizes to a wide range of different scenarios. The main contributions of this paper are:

1. A structured learning method, CORL, that combines analytic optimization and episodic reinforcement learning.
2. Defining a low-dimensional projection for the interaction parts of manipulation skills that allows us to use safe and data-efficient algorithms.
3. Learning a skill from a single demonstration by bootstrapping it with CORL and generalizing it with inverse optimal control.

This work extends previous work of ours on robot skill learning. In (Englert and Toussaint 2016) we proposed the combined optimization and reinforcement learning method CORL. In this work, we modify the algorithm by merging the two separate policy improvement parts into a more efficient hierarchical variant. Previously, each part had its own learning loop that was executed until convergence before continuing with the next part. We modify it into a single learning loop that combines both policy improvements. This reduces the amount of hyperparameters and interactions with the system. This work also integrates prior work on inverse optimal control (Englert and Toussaint 2015). Instead of using it directly on demonstration data, we integrate this method in a skill learning algorithm where we use it on data that was collected with a reinforcement learning method.

The structure of this paper is as follows. In Section 2, we present related work in the area of skill learning in robotics. Afterwards, we present in Section 3 background on trajectory optimization and inverse optimal control. In Section 4, we present the combined optimization and reinforcement learning method CORL. In Section 5, we combine the different parts into an algorithm that allows us to learn manipulation skills from a single demonstration. In
Section 6, we evaluate our approach on different synthetic and real-robot problems and compare it to state of the art learning methods.

2 Related Work

In Reinforcement Learning (RL) an agent learns a policy by interacting with its environment (Sutton and Barto 1998). In this section, we will cover related work on different learning approaches with a special focus on robot manipulation skills.

2.1 Learning Manipulation Skills

Policy search is a widely used technique to learn skills in robotics (Kober et al. 2013). One approach proposed by Kober and Peters (2008) uses dynamic movement primitives as policy representation and the policy search method PoWER to learn the shape and properties of the motion. Another approach is proposed by Kalakrishnan et al. (2011) that learns force control policies for manipulations. The policy is initialized with position control via imitation and afterwards augmented with a force profile that is learned with the reinforcement learning method Policy Improvement with Path Integrals (PI²) (Theodorou et al. 2010). They use a single reward function that combines different terms (e.g., smoothness, force, tracking errors). The difference to our approach is that we perform learning on two policy parameterizations. This allows us to use efficient Gauss-Newton optimization routines for the parts of a motion where an analytic cost function is available. Further, we combine it with an inverse optimal control method that extracts a cost function representation with higher generalization abilities than dynamic movement primitives. In our experiments, we compare to covariance matrix adaptation, which has been shown to be closely related to PI² (see (Stulp and Sigaud 2013)). Levine et al. (2016) proposed to learn a deep convolutional neural network that maps raw images directly to motor torques. The end-to-end training is done with guided policy search (Levine and Koltun 2013) that iterates between reinforcement learning to generate rollouts and supervised learning to train the neural network. They also add a pretraining step for the initial policy and the vision system to reduce the amount of interaction time. Chebotar et al. (2017) propose an extension of guided policy search with the reinforcement learning method PI². Fu et al. (2016) present a model-based reinforcement learning approach for manipulation skills. They use a neural network to represents the object interaction dynamics. This model is used as prior knowledge for new tasks and adapted during learning. They evaluate the approach on different inserting, stacking and assembling manipulations where they show that only a small amount of data is required. Instead of using a neural network as policy parametrization, we propose to use a high-level constrained optimization problem that generalizes to different skill scenarios. Further, we incorporate prior knowledge in form of a low-dimensional projection to achieve a directed ad sample-efficient learning behavior.

2.2 Episodic RL as Black-box Optimization

A restricted case of episodic reinforcement learning is where only the total return of an episode is observed but not the individual rewards at each timestep (Stulp et al. 2013). This property transforms the problem into a black-box optimization problem that allows one to use standard black-box optimization methods (e.g., Covariance Matrix Adaptation Evolution Strategy (CMA-ES) (Hansen and Ostermeier 2001) or Bayesian optimization (Mockus et al. 1978)). These methods have previously been used to learn parameters in robotics. For example, Bayesian optimization was used to learn gait parameters for locomotion skills (Lizotte et al. 2007; Calandra et al. 2015). Our approach combines this type of reinforcement learning with non-linear optimal control based on motion optimization. This allows us to use the black-box optimization methods only on a low-dimensional projection of the full policy, which leads to faster convergence.

There exist different variants of additionally including constraints in Bayesian optimization (Schonlau et al. 1998; Gelbart et al. 2014; Gardner et al. 2014; Gramacy and Lee 2011). We include a binary success constraint in our formulation that measures if a rollouts was successful. We use this constraint to achieve a secure learning process which avoids sampling points that violate the constraint strongly. To obtain this we propose a novel acquisition function that uses the variance of the constraint to guide the exploration on the decision boundary.

2.3 Safe Learning

An important aspect in learning manipulation skills is the safety that the robot does not damage itself or the environment. Schreiter et al. (2015) propose a safe exploration strategy for a similar problem to ours. They optimize a function in a safe manner where the feasible region is unknown. To do this they assume to observe a safety measure when samples are close to the boundary. This information is integrated into a differential entropy exploration criteria to select next candidates. They also provide an upper bound for the probability of failure. This approach would most likely lead to fewer failures during the exploration, but it requires additional information about the distance to the decision boundary in critical regions, which is not available in our problem formulation. We compare our approach to this strategy on a synthetic problem in Section 6.1.

Another approach for a safe exploration is proposed in Sui et al. (2015). The strategy SAFEOPT optimizes an unknown function with Bayesian optimization that is combined with a safety criterion of the form that the function value should exceed a certain threshold. They use the concept of reachability to categorize the search space in different sets for safe exploration and exploitation. The next data point is selected by sampling the most uncertain decision. This approach is used to learn a stabilization task on a quadrotor vehicle in Berkenkamp and Schoellig (2015).

Garcia Polo and Fernandez-Rebollo (2011) introduce a safe reinforcement learning approach that improves demonstrated behavior in a risk-sensitive manner. The behavior is represented with case-based reasoning techniques. The safety criterion is defined with the distance to the nearest neighbor that is limited with a threshold. The exploration is done by adding Gaussian noise to the current optimal actions.
Their approach uses case-based reasoning techniques which allows them to use multiple trajectories as demonstration.

Achiam et al. (2017) propose constrained policy optimization that uses constrained markov decision processes to achieve a safe learning. They derive a bound on the difference between the rewards of two different policies which is used to update a policy while guaranteeing to improve the return and to satisfy a constraint. They show that there method can be used to train high-dimensional neural network policies for robotics tasks.

None of the above methods for safe or Bayesian exploration would be sample-efficient when directly applied on the high-dimensional non-stationary policy. However, they could be used within our CORL framework, as demonstrated for GP-UCB and SAL in the evaluations.

2.4 Combined Optimization and Learning

There exist multiple approaches that combine learning and optimization methods. The advantage of this combination is that models can be used in the optimization problems. This usually leads to a lower dimensional space for the learning part, which results in fewer rollouts until convergence. In Rückert et al. (2013) a reinforcement learning algorithm for planning movement primitives is introduced that uses a two-layered learning formulation. In an outer loop the policy search method CMA-ES optimizes an extrinsic cost function that measures the task performance. This policy search is over parameters that are used in the inner loop to define a cost function for a trajectory optimization problem. This problem is used to compute trajectories that are fed back as input to the extrinsic cost function. A core difference to our approach is that they directly couple the objective functions with each other in a hierarchical way and only optimize the extrinsic objective function. The intrinsic objective function is only used to perform rollouts. In our formulation we optimize both objectives. Additionally, we use a safety constraint to guide the learning in a secure manner.

Kupcsik et al. (2013) proposed a policy search method that combines model-free reinforcement learning with learned forward models. They learn probabilistic forward models of the robot and the skill which are used to generate artificial samples in simulation. These samples are combined with real-world rollouts to update the policy. The relative entropy policy search method (Peters et al. 2010) is used to maximize the reward and balance the exploration and experience loss by staying close to the observed data. A main differences to our approach is that we divide the problem in model-based motion optimization that improves the motion efficiently and reinforcement learning that improves the skill by exploring a low-dimension representation. A further difference is that they learn a model of the task that is used in internal simulations, whereas we directly learn a model that maps parameters to return.

Vuga et al. (2015) introduced an approach that combines the reinforcement learning method PI² with the optimization algorithm iterative learning control (Bristow et al. 2006). The policy is represented with a dynamic movement primitive. This approach uses iterative learning control as exploration strategy in the first part of the learning. In the second part random exploration is used to fine-tune the policy. They use iterative learning control to adapt the trajectory and speed profile. Our approach differs especially w.r.t. the two policy parametrizations that allow us to use the reinforcement learning method in a secure and data-efficient manner with Bayesian optimization. Our analytic optimization method also allows us to define cost functions in arbitrary feature spaces.

2.5 Inverse Optimal Control

Inverse Optimal Control (IOC) is used to extract a cost function from data (Ng and Russell 2000; Ziebart et al. 2008; Levine and Koltun 2012). Many successful applications in different areas have demonstrated the capabilities of this idea, including the learning of quadruped locomotion (Kolter et al. (2008)), helicopter acrobatics (Abbeel et al. (2010)) and simulated car driving (Abbeel and Ng (2004); Levine and Koltun (2012)). For a broader overview on IOC approaches we refer the reader to the survey paper of Zhiwei and Joo (2012) and for an overview on imitation learning in robotics we recommend (Argall et al. 2009). Kalakrishnan et al. (2013) use inverse optimal control on manipulation skills. They introduce an inverse formulation of the reinforcement learning method PI². The cost function consists of a control cost and a general state dependent cost term at each time step. They maximize the trajectory likelihood for all demonstrations by sampling trajectories around the demonstrations. The method is evaluated on grasping tasks.

Finn et al. (2016) propose to use a neural network to represent the cost function. This allows one to use nonlinear cost functions and does not require to define features by hand. The network is trained in an inner loop of a policy search method and evaluated on placement and pouring tasks on a real robot. In our approach we focus on learning a cost functions of a constrained optimization problem similar to Puydupin-Jamin et al. (2012) where we also use the KKT condition to define the inverse problem of a constrained optimization problem. We do not directly apply IOC on the input demonstrations. Instead of this, we first apply a reinforcement learning method to improve the demonstrations before we extract a cost function.

3 Background on Trajectory Optimization and Inverse Optimal Control

In the following section, we describe background on how to optimize a trajectory w.r.t. a cost function and constraints. Afterwards, we describe the inverse problem on how to extract a cost function from trajectories.

3.1 K-Order Markov Optimization (KOMO)

A trajectory \tilde{x} is a sequence of $T + 1$ robot configurations $x_t \in \mathbb{R}^Q$ that lead to a total amount of $n = Q(T + 1)$ parameter. The goal of trajectory optimization is to find a trajectory \tilde{x}, given an initial configuration x_0, that minimizes a certain objective function. In KOMO (Toussaint 2017) the objective function is defined as

\[f(\tilde{x}, y, w) = \sum_{t=1}^{T} w_t^T \phi_t^2(\tilde{x}_t, y) \]
\[= w^T \phi^2(\tilde{x}, y). \]
This defines the objective as a weighted sum over all time steps, where the costs are defined in form of squared features ϕ. Each cost term depends on a k-order tuple of consecutive configurations $\tilde{x}_t = (x_{t-k}, \ldots, x_{t-1}, x_t)$, containing the current and k previous robot configurations. In addition to the robot configuration \tilde{x}_t, we use external parameters of the environment y to contain information that are important for planning the motion (e.g., object positions or goal states). In addition to the task costs, we also consider inequality and equality constraints

$$
\forall t \quad g_t(\tilde{x}_t, y) \leq 0, \quad h_t(\tilde{x}_t, y) = 0 ,
$$

which, as features $\phi_t(\tilde{x}_t, y)$, can refer to arbitrary task spaces. The resulting optimization problem is

$$
\hat{x}^* = \arg \min_x f(\hat{x}, y, w)
$$

s.t.

$$
g^*(\hat{x}, y) \leq 0
$$

$$
h^*(\hat{x}, y) = 0
$$

where g and h are vector functions that contain all inequality and equality constraints. The equality constraints are in our approach mostly used to represent persistent contacts with the environment (e.g., h describes the distance between hand and object that should be exactly 0). The motivation for using equality constraints for contacts, instead of using cost terms in the objective function as in Equation (1), is the fact that minimizing costs does not guarantee that they will become 0, which is essential for establishing a contact. We incorporate the constraints with the augmented Lagrangian method and solve the resulting problem with Gauss-Newton optimization (Wright and Nocedal 1999). Thereby, we exploit the structure of the gradient and Hessian for efficient optimization (see (Toussaint 2017) for more details). In addition to the solution \hat{x}^* we also get the Lagrange parameters λ^*, which provide information on when the constraints are active during the motion. This knowledge can be used to make the control of interactions with the environment more robust (see (Toussaint et al. 2014)).

In this paper we use the problem representation in Equation (4) as output of our skill learning algorithm with the goal to generalize to a wide range of environments y. We also use KOMO within both learning steps of our algorithm for improving and generalizing the skill w.r.t. analytic cost functions.

3.2 Inverse Karush-Kuhn-Tucker (IKKT)

In this section, we describe the inverse optimal control method IKKT (Englert and Toussaint 2015). The core idea is to learn a cost function from data of the form $D = \{x^{(i)}, y^{(i)}\}_{i=1}^p$. We make the assumption that D is optimal and we aim to learn the weight vector w in Equation (4) in such a way that the KKT optimality conditions are fulfilled for D.

The IOC objective is derived from the Lagrange function of the problem in Equation (4),

$$
L(\bar{x}, \bar{y}, \lambda, w) = f(\bar{x}, \bar{y}, w) + \lambda^\top \begin{bmatrix} g(\bar{x}, \bar{y}) \\ h(\bar{x}, \bar{y}) \end{bmatrix},
$$

and the Karush-Kuhn-Tucker (KKT) conditions. The first KKT condition states that for an optimal solution \hat{x}^* the condition $\nabla_x L(\hat{x}^*, \bar{y}, \lambda^*, w) = 0$ has to be fulfilled. With the gradient of Equation (1),

$$
\nabla_x f(\bar{x}, \bar{y}, w) = 2J_\phi(\bar{x}, \bar{y})\text{diag}(w)\Phi(\bar{x}, \bar{y})
$$

this leads to

$$
2J_\phi(\bar{x}, \bar{y})\text{diag}(w)\Phi(\bar{x}, \bar{y}) + \lambda^\top J_c(\bar{x}, \bar{y}) = 0 ,
$$

where the matrix J_c is the Jacobian of all constraints and J_ϕ is the Jacobian of the features Φ. We assume that the demonstrations are optimal and should fulfill these conditions. Therefore, the IOC problem can be viewed as searching for a parameter w such that this condition is fulfilled for all the demonstrations.

We express this idea in terms of the loss function

$$
\ell(w, \lambda) = \sum_{i=1}^p \ell^{(i)}(w, \lambda^{(i)})
$$

where we sum over p demonstrations of the scalar product of the first KKT condition.

In Equation (8) i enumerates the demonstrations and $\lambda^{(i)}$ is the dual to the demonstration $x^{(i)}$ under the problem defined by w. Note that the dual demonstrations are initially unknown and, of course, depend on the underlying cost function f. More precisely, $\lambda^{(i)} = \lambda^{(i)}(x^{(i)}, y^{(i)}, w)$ is a function of the primal demonstration, the environment configuration of that demonstration, and the underlying parameters w. And $\ell^{(i)}(w, \lambda^{(i)}(w)) = \ell^{(i)}(w)$ becomes a function of the parameters only (we think of $x^{(i)}$ and $y^{(i)}$ as given, fixed quantities, as in Equations (8-9)).

Given that we want to minimize $\ell^{(i)}(w)$, we can substitute $\lambda^{(i)}(w)$ for each demonstration by inserting Equation (7) into (9) and choosing the dual solution that analytically minimizes $\ell^{(i)}(w)$ subject to the KKT’s complementarity condition

$$
\frac{\partial}{\partial \lambda^{(i)}} \ell^{(i)}(w, \lambda^{(i)}) = 0
$$

$$
\Rightarrow \lambda^{(i)}(w) = -2(J_cJ_c^\top)^{-1}J_cJ_\phi^\top\text{diag}(\Phi)w
$$

Note that here the matrix J_c is a subset of the full Jacobian of the constraints J_c that contains only the active constraints during the demonstration, which we can evaluate as g and h are independent of w. This ensures that (11) is the minimizer subject to the complementarity condition. The number of active constraint at each time point has a limit. This limit would be exceeded if more degrees of freedom of the system are constrained than there are available.

By inserting Equation (11) into Equation (9) we get

$$
\ell^{(i)}(w) = 4w^\top\text{diag}(\Phi)J_\phi(I - J_cJ_c^\top)^{-1}J_cJ_\phi^\top\text{diag}(\Phi)w
$$

which is the IOC cost per demonstration. Adding up the loss functions for all demonstrations in Equation (8) gives the
total Inverse KKT loss of
\[\ell(w) = w^\top \Lambda w \quad \text{with} \quad \Lambda = 4 \sum_{i=1}^{P} \Lambda^{(i)}. \] (12)

The resulting optimization problem is
\[\min_w w^\top \Lambda w \quad \text{s.t.} \quad w \geq 0, \sum_i w_i = 1. \] (13)

Note that we constrain the parameters \(w \) to be positive. This reflects that we want squared cost features to only positively contribute to the overall cost in Equation (1). Additionally, we use another constraint to regularize the problem by requiring that the sum of all weights should be 1. The latter constraint avoids the singular solution \(w = 0 \) where zero costs are assigned to all demonstrations. Equation (13) is a (convex) quadratic program (QP), for which there exist efficient solvers. The gradient \(w^\top \Lambda \) and Hessian \(\Lambda \) are very structured and sparse, which we exploit in our implementations.

In practice we usually use parametrizations on \(w \). This is useful since in the extreme case, when for each time step a different parameter is used, this leads to a very high dimensional parameter space (e.g., 10 tasks and 300 time steps lead to 3000 parameter). This space can be reduced by using the same weight parameter over all time steps or to activate a task only at some interesting time points. The simplest variant is to use a linear parametrization \(w(\rho) = A\rho \), where \(\rho \) are the parameters that the IOC method learns. This parametrization allows a flexible assignment of one parameter to multiple task costs. Further linear parametrizations are radial basis function or B-spline basis functions over time \(t \) to more compactly describe smoothly varying cost parameters. For such linear parametrization the problem in Equation (13) remains a QP that can be solved very efficiently. It is also possible to use nonlinear mappings of the form \(w(\rho) = \mathcal{A}(\rho) \) to learn more complex weight functions (see (Englert and Toussaint 2015) for more details).

In our approach, we use IKKT to extract a cost function representation of a skill that can generalize to new environments \(y \). Instead of directly applying IKKT on demonstration data, we only start with a single demonstration and first apply reinforcement learning to collect data while exploring and improving the skill.

4 Combined Optimization and Reinforcement Learning (CORL)

CORL is a structured reinforcement learning formulation that combines optimization and episodic reinforcement learning. CORL starts with a single demonstration and improves the skill w.r.t. different objective functions. The main idea of the algorithm is to use the benefits of a transition model and analytic cost function when they are available and the flexibility of black-box objectives otherwise. We specifically aim to deal with cases where the policy parameters are high-dimensional (\(n \geq 1000 \)). But at the same time we aim for efficient skill learning from only few (<100) real-world rollouts. Clearly, for this to be a well-posed problem we need to assume a certain structure in the problem.

4.1 Problem Formulation

Our problem formulation consists of an analytically known cost function
\[J : \mathbb{R}^n \to \mathbb{R}, \] (14)
a \(q \)-dimensional equality constraint
\[h(\bar{x}, y, \theta) = 0 \] (15)
that ties every policy parameter \(\bar{x} \) and environment configuration \(y \) to a low-dimensional projection \(\theta \in \mathbb{R}^m \) (see details below), a black-box return function
\[R : \mathbb{R}^m \to \mathbb{R}, \] (16)
and a black-box success constraint
\[S : \mathbb{R}^m \to \{0, 1\}. \] (17)

With these four ingredients, we define the generalized reinforcement learning problem
\[\min_{\bar{x}, \theta} J(\bar{x}) - R(\theta) \quad \text{s.t.} \quad h(\bar{x}, y, \theta) = 0, S(\theta) = 1. \] (18)

That is, we want the best policy parameters \((\bar{x}^*, \theta^*)\) (measured with \(J(\bar{x}) \) and \(R(\theta) \)) that fulfill a skill (measured with \(S(\theta) = 1 \)). In contrast to the standard optimal control and reinforcement learning problems, that only optimize a single objective function, our formulation splits the objective in an analytic part \(J(\bar{x}) \), a black-box part \(R(\theta) \) and a black-box success constraint \(S(\theta) \). The analytic cost function \(J(\bar{x}) \) contains all the costs we know a priori in analytic form. The black-box return function \(R(\theta) \) and success constraint \(S(\theta) \) are a priori unknown and we can only observe noisy samples by doing rollouts for a given input.
The low-dimensional projection \(\theta \) is used to parametrize the interactions with the environment (for more details on how we choose \(h \) in practice, see Section 5.1). An equality constraint \(h(\bar{x}, y, \theta) \) is incorporated to define the relation between the high-dimensional \(\bar{x} \) and the environment \(y \) to the lower dimensional \(\theta \). We assume that \(h \) is smooth and that, for given \(\bar{x} \) and \(y \), \(h(\bar{x}, y, \theta) = 0 \) identifies a unique \(\theta(\bar{x}, y) = \theta \). In that sense, \(\theta \) is a projection of \(\bar{x} \) and \(y \) (see Figure 3 for an example in two dimensions). This projection is formulated in terms of an equality constraint so that, for given \(\theta \) and environment \(y \), the remaining problem on \(\bar{x} \) is a standard constraint optimization problem.

4.2 Approach: Combining Optimization with Reinforcement Learning

We solve the problem in Equation (18) by using optimal control methods to improve the policy w.r.t. the high-dimensional \(\bar{x} \) and black-box Bayesian optimization to improve the policy w.r.t. the low-dimensional \(\theta \). We assume to have an initial policy parameterization \((\bar{x}^0, \theta^0)\) as input to our method that fulfills the skill \((S(\theta^0) = 1)\). A summary of the policy update steps of CORL can be found in the first step of Algorithm 1.

The learning loop of CORL consists of two steps. The first step is black-box Bayesian optimization over \(\theta \) that aims at improving \(R(\theta) \) and fulfilling the constraint \(S(\theta) \). We define an acquisition function \(a(\theta) \) in such a way that it explores the parameter space in a secure and data efficient manner by finding a good tradeoff between making large steps that potentially lead to risky policies and small steps that would require many rollouts. To achieve this goal we learn a binary classification model of \(S(\theta) \) to find the boundary between policies that lead to success or failure. This classifier is used to keep the exploration around the feasible region and reduce the number of (negative) interactions with the system. For our domain of manipulation skills we use the contacts during the manipulations to define a low-dimensional representation \(\theta \) (e.g., the contact position). The projection constraints \(h(\bar{x}, y, \theta) \) can be computed with robot kinematics that describes the relationship between the full trajectory \(\bar{x} \) and environment \(y \) to the low-dimensional \(\theta \). Optimizing \(\theta \) with Bayesian optimization learns which interactions lead to a success. For many cases this is reasonable, since the parts of the motion where the robot is performing the contact are difficult to fit into the analytic cost function \(J \) and they are usually very important to achieve success.

The second step in CORL is constrained optimization and acts on the high-dimensional \(\bar{x} \) to improve the analytic cost function \(J(\bar{x}) \). For this we use the constrained trajectory optimization framework of Section 3.1. Thereby, the low dimensional parameter \(\theta \) is kept fixed with the equality constraint \(h(\bar{x}, y, \theta) = 0 \). Fixing the low dimensional parameter \(\theta \) means that the resulting policy fulfills a certain property that is defined by \(h(\bar{x}, y, \theta) = 0 \). We assume that the success of a skill only depends on \(\theta \), which implies that all policy parameters \(\bar{x} \) and environments \(y \) that fulfill the constraint for a fixed \(\theta \) lead to the same outcome.

In the following two sections, first the Bayesian optimization and afterwards the motion optimization are described in detail.

4.3 Reinforcement Learning over \(\theta \) with Unknown Success Constraints

We introduce an episodic reinforcement learning method to improve the policy with respect to the low-dimensional projection \(\theta \). The goal of this improvement strategy is to optimize the black-box return function \(R(\theta) \) under the success constraint \(S(\theta) \) so as to have a safe interaction with the system. We use Bayesian optimization to learn a binary classifier for the success constraint \(S(\theta) \) and a regression model for the return function \(R(\theta) \). We propose a new acquisition function \(a(\theta) \) that combines both models in such a way that the next policy is selected in a secure and data-efficient manner. We first introduce required background on Gaussian processes and Bayesian optimization before introducing our reinforcement learning strategy.

4.3.1 Background on Gaussian Processes

For both function approximations we use Gaussian processes (GP). The advantage of GPs is that they can express a broad range of different functions and that they provide probability distributions over predictions. A GP defines a probability distribution over functions (Rasmussen and Williams 2006). We will first handle the regression and afterwards the classification case.

A GP is fully specified by a mean function \(m(\theta) \) and a covariance function \(k(\theta, \theta') \). In the regression case, we have data of the form \(\{\theta_i, r_i\}_{i=1}^d \) with inputs \(\theta_i \in \mathbb{R}^m \) and outputs \(r_i \in \mathbb{R} \). Predictions for a test input \(\theta_i \) are given by mean and variance

\[
\begin{align*}
\mu(\hat{\theta}_s) &= m(\hat{\theta}_s) + \kappa(\hat{\theta}_s)^\top(K + \sigma^2I)^{-1}r \\
\sigma^2(\hat{\theta}_s) &= \kappa(\hat{\theta}_s)^\top(K + \sigma^2I)^{-1}\kappa(\hat{\theta}_s)
\end{align*}
\]

with \(\kappa(\hat{\theta}_s) = k(\hat{\theta}_s, \theta_i) \), the Gram matrix \(K \) with \(K_{ij} = k(\theta_i, \theta_j) \), and training inputs \(\theta = [\theta_1, \ldots, \theta_d] \) with corresponding targets \(r = [r_1, \ldots, r_d] \).

In the binary classification case, the outputs are discrete labels \(s \in \{0, 1\} \) and we have data of the form \(\{\theta_i, s_i\}_{i=1}^d \). Here we cannot directly use a GP to model the output. Therefore, the GP models a discriminative function \(g(\theta) \) which defines a class probability via the sigmoid function,

\[
p(s = 1|\theta) = \sigma(g(\theta)) = \frac{1}{1 + e^{-g(\theta)}}.
\]

Since this likelihood is non-Gaussian the exact posterior over \(g \) is not a Gaussian process—one instead uses a Laplace approximation (Nickisch and Rasmussen 2008). For more details regarding GPs we refer to Rasmussen and Williams (2006).

4.3.2 Background on Bayesian Optimization

Bayesian optimization (Mockus et al. 1978) is a strategy to find the maximum of an objective function \(R(\theta) \) with \(\theta \in \mathbb{R}^m \), where the function \(R(\theta) \) is not known in closed-form expression and only noisy observations \(r \) of the function value can be made at sampled values \(\theta \). These samples are collected in a dataset \(\{\theta_i, r_i\}_{i=1}^d \) that is used to build a GP model of \(R \). The next sample point \(\theta_{i+1} \) is chosen by maximizing an acquisition function \(a(\theta) \). There are many different ways to define this acquisition function (Brochu et al. 2010). One widely used acquisition function is the probability of improvement (Kushner 1964) that is defined
4.4 Motion Optimization for Constrained θ

After a next candidate of the low-dimensional policy parameter $\theta^{(j)}$ is selected, a backprojection to the full policy representation $\tilde{x}^{(j)}$ is necessary to perform a rollout on the actual system. We do this backprojection by selecting the $\tilde{x}^{(j)}$ that optimizes $J(\tilde{x})$ and fulfills the constraint

$$h(\tilde{x}, \theta, \tilde{\theta}^{(j)}) = 0.$$

This leads to the optimization problem

$$\tilde{x}^{(j)} = \arg\min_{\tilde{x}} J(\tilde{x})$$

subject to

$$h(\tilde{x}, \theta, \tilde{\theta}^{(j)}) = 0.$$

We utilize the KOMO framework (see Section 3.1) to optimize this problem by defining the analytically known cost function J as a weighted sum of squared features (see Equation (1)) and $h(\tilde{x}, \theta, \tilde{\theta}^{(j)}) = 0$ as an equality constraint (see Equation (3)) that is parametrized by $\tilde{\theta}^{(j)}$. The resulting policy parameter $(\tilde{\theta}^{(j)}, \tilde{x}^{(j)})$ are executed on the real robot and the observed objectives $(R(\tilde{x}^{(j)}), J(\tilde{\theta}^{(j)}), S(\tilde{\theta}^{(j)}))$ are added to the dataset. These steps are repeated until there is no change in the policy parameters.

The optimization problem in Equation (25) allows to include a wide variety of objectives and constraints that are necessary for a task (e.g., smoothness, collision avoidance). We now define two objectives for the problem in Equation (25) that we use in our experiments for manipulation skills.

4.4.1 Optimizing Smoothness of Unconstrained Motion

Our first objective criteria is smoothness in configuration space while fixing the low-dimensional projection. In our experiments we define configuration space acceleration features

$$\phi_i(\bar{x}_i) = (\bar{x}_{i-1} - 2\bar{x}_{i-2} + \bar{x}_{i-3})/\Delta_t^2$$

that contribute to the KOMO objective in Equation (1) (alternative smoothness criteria such as jerk/torque can also be used). We use this feature to select the next policy parameters $\tilde{x}^{(j)}$ by minimizing the problem defined in Equation (25). This leads to a smoother motion of the unconstrained part of the motion (e.g., the motion towards the contact).

4.4.2 Optimizing the Interaction Phase Profile

The second objective is to achieve a smoother motion also w.r.t. the time course of the constraints (e.g., when contacts are established). To do this we additionally optimize the phase of the trajectory and keep the geometry of the trajectory fixed. Thereby, we assume that the trajectory \bar{x} can be evaluated at time t by interpolating it with splines. We optimize the phase profile $p(t) : [0, T] \rightarrow [0, 1]$ of this trajectory w.r.t. transition costs. To do this we discretize $p(t)$ in $K + 1$ points $\bar{p} = [p_0, p_1, \ldots, p_K]$ with the boundary conditions $p_0 = 0$ and $p_K = 1$.

Again, we use the squared configuration space accelerations as smoothness term that results in an overall cost

$$J(\bar{p}) = \sum_{i=0}^{K} \left((\bar{x}(p_{i+1}) - 2\bar{x}(p_{i+1}) + \bar{x}(p_{i+1})) / \Delta_t^2 \right)^2$$

subject to

$$+ (p_{i+1} - 2p_i + p_{i-2})^2.$$

The second term is a cost term directly on the acceleration of the phase variable. The resulting phase profile p^* defines a new trajectory \tilde{x} that is executed on the real system.

5 Learning Manipulation Skills from a Single Demonstration

Algorithm 1 shows our skill learning approach that connects the different learning methods presented in the previous...
sections. The inputs are a demonstration of the skill and the objective functions. Additionally, a low-dimensional projection \(\theta \) is defined with the projection constraint \(h(\bar{x}, y, \theta) \) (see Section 5.1 for different ways to define \(h \) for manipulations).

In the first step of the algorithm the structured reinforcement learning method CORL (see Section 4) is applied. We initialize the dataset \(D \) with the input demonstration \((\bar{x}^{(0)}, \theta^{(0)}) \) and its corresponding performance \((J(\bar{x}^{(0)}), R(\theta^{(0)}), S(\theta^{(0)})) \). Afterwards, we iterate the CORL policy update, which first selects a new low-dimensional projection \(\theta^{(j)} \) by maximizing Equation (24) that is then mapped on the full policy representation \(\bar{x}^{(j)} \) by optimizing Equation (25). This policy is executed on the real system and the observed \(J(\bar{x}^{(j)}), R(\theta^{(j)}) \) and \(S(\theta^{(j)}) \) are added to the dataset \(D \). This procedure is repeated until there is no more change in the policy parameters. The result of CORL provides us with a dataset \(D \) that contains all the rollouts with their performance.

In the second step of Algorithm 1, we select the best \(b \) successful data points of \(D \) to define a new dataset \(D^* \). This dataset \(D^* \) is used to learn a cost function of the skill with the inverse optimal control method IKKT (see Section 3.2). To do this we use a set of features and constraints that are specific for manipulations skills, including the projection constraint \(h(\bar{x}, y, \theta) = 0 \) (see details in Section 5.2). Afterwards, we learn the corresponding weights \(w \) with the optimization problem in Equation (13) such that the resulting cost function fulfills the IKKT conditions of the dataset \(D^* \).

The resulting constrained optimization problem is the output of our method, which allows us a wide range of generalization abilities to intrinsic or extrinsic changes. Extrinsic changes are in our case different environments \(y \), which are different initial configurations of the environment (e.g., different object positions) or different target states (e.g., different final door angle). The generalizations to intrinsic changes means the ability that a robot can perform a skill in multiple ways (e.g., a door can be opened with many different contacts). During the learning with CORL, we collected a dataset that contains many parameters \(\theta \) that allow to control the skill in different ways.

5.1 Low-dimensional Projection \(\theta \) as Interaction Parameters in Manipulations

In the application domain of robot manipulation skills, we design the low-dimensional projection \(\theta \) as interaction parameters with the environment. This follows our assumption that the interactions are the most important parts of the skill and difficult to model. Essentially our framework assumes that this interaction parameter space is much lower dimensional than the full robot motion. The projections can be split in two different types: 1) Parameter of the contacts with the environment, where \(\theta \) should capture essential parameters of the interaction with the objects, e.g., where and how to establish contact and where to release contact. 2) Parameter of the degrees of freedom of the environment. For example, how far to rotate a door handle until it unlocks the door joint. In our experiments on the PR2, we show different combinations of these two projection types.

Algorithm 1

Inputs:
- Demonstration \((\bar{x}^{(0)}, \theta^{(0)}, y) \)
- Objectives and constraints: \(J, R, S, h \)

1. Improve skill with CORL (Section 4)
- Init \(D = (\bar{x}^{(0)}, \theta^{(0)}, R(\bar{x}^{(0)}), J(\theta^{(0)}), S(\theta^{(0)})) \)
- \(\theta^{(j)} = \arg \max_\theta \) for \(J(\bar{x}^{(j)}), R(\theta^{(j)}), S(\theta^{(j)}) \)
- Motion Optimization for constrained \(\theta \):
 - \(\bar{x}^{(j)} = \arg \min_{\bar{x}} J(\bar{x}) \) s.t. \(h(\bar{x}, y, \theta^{(j)}) = 0 \)
 - Perform rollout with policy parameter \(\bar{x}^{(j)} \)
 - Add \((\bar{x}^{(j)}, \theta^{(j)}, J(\bar{x}^{(j)}), R(\theta^{(j)}), S(\theta^{(j)})) \) to \(D \)

2. Learn cost function with IKKT (Section 3.2)
- Define a dataset \(D^* \) with the best \(b \) candidates of \(D \)
- Optimize feature weights
 - \(w^* = \arg \min_w \ell(w) \) s.t. \(w \geq 0, \sum_i w_i \leq 1 \)

Output:
- Constrained optimization problem:
 - \(\min_{\bar{x}} w^T \Phi(\bar{x}, y) \) s.t. \(g(\bar{x}, y) \leq 0, h(\bar{x}, y) = 0 \)

A concrete constraint that we use in the door opening experiment in Section 6.3 defines the contact points on the door handle. If \(\phi_{\text{CP}}(\bar{x}_{t_c}) \) is the forward kinematics of the robot’s contact points at the time of contact \(t_c \) and \(\theta \) is the point where the robot is grasping the door handle, the projection constraint can be defined as

\[
h(\bar{x}, y, \theta) = \phi_{\text{CP}}(\bar{x}_{t_c}) - \theta.
\]

This concept is transferable to multiple manipulation skills where the contact points are crucial for performance and success.

5.2 Inverse KKT Features for Manipulations

Manipulating external degrees of freedom shares a common structure that we want to extract in a generic set of features and constraints. Our Inverse KKT formulation includes several cost features and hard constraints. In the real robot experiments we use the following kind of features:

- Transition features: Represent the smoothness of the motion (e.g., sum of squared acceleration or torques)
- Position features: Represent a body position relative to another body (e.g., between robot gripper and door handle).
- Orientation features: Represent orientation of a body relative to another body.
Concerning the constraints, we always adopt the projection define these features relative to the manipulated objects, such that they can be transferred more easily to different scenarios. This results from the fact that the environment is usually not completely known (e.g., position of objects, kinematic structure, physical entities) and that information about how this environment can be manipulated into a certain goal state is not available.

6.1 Evaluation on a Synthetic Benchmark

In this evaluation we compare different algorithms on a synthetic benchmark problem. To allow for reproducible quantitative comparison, we define a generalized RL problem in the form of Equation (18) with parameters (e.g., contact points) as an equality constraint into IKKT. Further constraints are:

- Inequality constraints to avoid collisions with the environment.
- Inequality constraints to stay inside the robot joint limits.
- Equality constraint to fix external degrees of freedom that are not being manipulated.
- Equality constraint to ensure the final state of external degrees of freedom are reached (e.g., final door state).

Equation (13) is used to compute optimal weights w. The features that receive a weight larger than 0 are extracted and used in the resulting policy.

6 Experiments

We evaluate our approach on synthetic optimization problem and multiple robot manipulation experiments. In both cases, we compare the performance to alternative learning methods. We address different manipulations with a PR2 where for the part of the motion where the robot is moving freely, good models are available, but for the part where the robot interacts with objects it is hard to obtain good models. This results from the fact that the environment is usually not completely known (e.g., position of objects, kinematic structure, physical entities) and that information about how this environment can be manipulated into a certain goal state is not available.

6.1 Evaluation on a Synthetic Benchmark

In this evaluation we compare different algorithms on a synthetic benchmark problem. To allow for reproducible quantitative comparison, we define a generalized RL problem in the form of Equation (18) with parameters $\bar{x} \in \mathbb{R}^2$ and projection $\theta \in \mathbb{R}$. The problem is defined with an analytic cost

$$J(\bar{x}) = (x_1^2 + x_2^2 - 1)^2,$$

and a black-box return

$$R(\theta) = -0.5\theta^2 + \cos(3\theta),$$

and a black-box success

$$S(\theta) = [-1.5 < \theta < 2.5].$$

The projection is defined with the constraint

$$h(\bar{x}, \theta) = \theta - \tan\left(\frac{x_1}{x_2}\right).$$

The total objective we want to minimize is $J(\bar{x}) - R(\theta)$ under the constraint $S(\theta) = 1$ (see Equation (18)). We limit the search space to the region $\bar{x} \in [-1.5, 1.5] \times [-1.5, 1.5]$. This problem has multiple local optima and a global optimum at $\bar{x}^* = (1, 0)$ with a value of -1. The contours of $J(\bar{x}) - R(\theta)$ are visualized in Figure 4, where the red area denotes the infeasible region and the green cross the optima. We compare two different type of algorithms with each other. The first type uses the CORL framework we proposed in this paper with different reinforcement learning algorithms (noted as CORL + <method>). The second type are standard reinforcement learning methods that optimize \bar{x} and ignore the specific problem structure. Here is a summary of all evaluated algorithm configurations:

- **PIBU**: Bayesian optimization with the acquisition function PIBU (see Equation (24)).
- **PoWER**: Policy learning by weighting exploration with the returns (Kober and Peters 2008).
- **UCB**: Bayesian optimization with the acquisition function upper confidence bound (Brochu et al. 2010).
- **CMA-ES**: Covariance matrix adaptation evolution strategy (Hansen and Ostermeier 2001).
- **CORL + PIBU**: CORL algorithm with PIBU.
- **CORL + UCB**: CORL algorithm with UCB.
- **CORL + CMA-ES**: CORL algorithm with CMA-ES.
- **CORL + SAL**: CORL algorithm with safe active learning (Schreiter et al. 2015).

Only the PIBU and SAL variants aim for a safe exploration during the optimization process. Note that SAL assumes to observe the distance to the feasibility boundary in critical (but feasible) regions, which all other methods do not observe.
To enable testing those methods that cannot cope with different objectives and success constraints (i.e., CMA-ES, UCB and PoWER), we defined the combined objective function
\[
o(x) = [S(\theta) = 1](J(x) - R(\theta)) + [S(\theta) = 0]15.
\] (33)

The return and cost function can only be observed for parameters that lead to success, such that it is consistent with our method. Failures receive a constant cost of 15. The optimization step in CORL is done with a Newton method. The acquisition function used for the regression GP \(g\) uses the hyperparameter \(l = 0.4\), \(\sigma_{sf} = 10\) and \(\sigma = 0.11\). The classification GP \(g_S\) uses \(l = 0.4\), \(\sigma_{sf} = 10\) and a constant prior mean of \(-7\). We executed all algorithms on this problem from 100 different initial parameters \(x\), which are samples uniformly in the feasible search region. The CMA-ES algorithm uses a population size of 6 and the number of offspring is 3. The table in Figure 5 shows the results of this experiment. We compare the metrics:

- **Global optimum found:** This metric describes how many times the algorithm found the global optimum \(\bar{x}^*\).
- **Max distance to safe region:** The maximum distance of all failure samples to the safety region. All values are given by mean and standard deviation over the 100 trials.
- **Number of failures:** The number of failure samples \(S(\theta) = 0\) that were selected by the algorithm until convergence. All values are given by mean and standard deviation over the 100 trials.

The best two algorithms of each metric are marked bold in the table in Figure 5. The CORL + SAL method is as expected the safest method with a mean of 1.57 failure samples—but recall that it assumes it can observe the distance to the boundary in critical regions, which ours does not. Our proposed methods CORL + PIBU find the global optimum very often and exhibit a very low number of near-boundary failures even without observing critical distance. The methods that do not take safety into account reach higher number of failure samples (between 5 and 10) that are also located far away from the safety region.

6.2 Cabinet

We apply Algorithm 1 in this experiment on the manipulation skill of opening a cabinet with a PR2. The experimental setup is visualized in Figure 2. The skill consists of grasping the knob, rotating the knob until it unlocks the door joint and opening the door. The full policy parametrization is a trajectory \(\bar{x}\) that consists of 200 timesteps and 11 degrees of freedom (9 belong to the robot and 2 to the cabinet). The trajectory is executed with a duration of 15 seconds. We recorded a single demonstration with kinesthetic teaching as initialization.

We define the low-dimensional \(\theta\) as described in Section 5.1. We select a three dimensional space of the interaction with the cabinet. The first parameter is the opening angle of the cabinet at the end of the skill. The second parameter is the reference gripper opening, which corresponds to the amount of force that is used while grasping the knob. The third parameter is the final angle of the knob, which corresponds to whether the cabinet door
Figure 7: Door experiment (see Section 6.3). The image in (a) shows the setup of the PR2 opening a door. The figure in (b) shows the learned return function $R(\theta)$ with Bayesian optimization. Blue points denote successful rollouts, red points denote failures and the magenta star is the best parameter found. The red line denotes the decision boundary of the classifier. The images in (c) show four different grasps that were tried during learning. These images in (d) and (e) show the generalization abilities of our approach regarding to different initial positions of the robot and different final door angles.

After learning the weight parameter u^\ast with Inverse KKT it was possible to generalize to all these scenarios of the door opening skill.

can be manipulated. All parameters are defined relative to the initial demonstration. The analytic cost function J measures the sum of squared accelerations over the complete trajectory. The black-box return R is the negative amount of force used during the opening, which is measured with a force/torque sensor in the wrist of the robot. The black-box success S is the binary signal if the door was opened successful to a certain degree.

In the first part of Algorithm 1 we use CORL to improve the skill w.r.t. our defined objectives. We compare four different algorithm configurations of CORL on this problem:

1. CORL + PIBU ($l = 0.3$): Bayesian optimization with the acquisition function PIBU and a wide kernel length scale l. The hyperparameter are $\sigma_{sf} = 0.5$ and $\sigma = 0.01$ for the regression GP g_R and $\sigma_{sf} = 6$ for the classification GP g_S.
2. CORL + PIBU ($l = 0.15$): PIBU with a narrow kernel length scale l. The other hyperparameter are identical to configuration 1.
3. CORL + CMA-ES ($\sigma = 0.3$): CMA-ES with a high initial variance σ^2, a population size of 7 and 3 parents.
4. CORL + CMA-ES ($\sigma = 0.1$): CMA-ES with a small initial variance σ^2. The other parameter are identical to configuration 3.

In CORL + PIBU we use two different hyperparameters l for the kernel in Equation (23), that corresponds how far a datapoint extrapolates its value. In the CMA-ES case, we use a configuration with a small initial variance and a configuration with a wide initial variance of the samples. The results of the experiment are visualized in Figure 6. Figure 6(a) shows the three dimensional projection space θ for the configuration CORL + PIBU ($l = 0.3$). The success region $g_S(\theta) = 0$ is visualized as gray surface and all the points inside lead to success and the points outside to failure. The successful samples are visualized as dots and the color denotes the return value. Blue dots have the lowest and red dots have the highest return value. The failures are visualized as crosses. The best candidate is visualized with a green circle around it.

Figure 6(b) shows the best candidate and Figure 6(c) shows the success rate over iterations. All methods lead to a similar best policy and the learning behavior depends on the
hypperparameter of each method. The best policy receives an objective of 4.33 where the analytic cost $J(x)$ is 0.96 and the black-box return $R(\theta)$ is -3.37. The configuration CORL + PIBU ($l = 0.30$) already finds its best solution after 20 iterations, but requires more iterations until convergence to explore the whole success region. The configuration CORL + PIBU ($l = 0.15$) leads to the highest success rate of 0.8, but also requires more iterations until convergence then other variants. This result shows the tradeoff that has to be done between convergence speed and safe exploration.

In the second part of Algorithm 1 we use the collected data to learn a higher-level cost function representation of the skill. We use three successful trajectories from the dataset D and applied the IKKT algorithm with the features described in Section 5.2. The resulting cost function was able to generalize to different initial positions and door angles of the cabinet (see Figure 6(d)–(e)).

6.3 Door

In this experiment, we apply Algorithm 1 on opening a door (see Figure 7(a)). The motion also includes the unlocking of the door by turning the handle first. We define two parameters in the contact space of the door handle as low-dimensional parameter θ. The first parameter is the finger position on the handle relative to the demonstration. The second parameter is the finger opening widths. Different grasps of such a projection are shown in Figure 7(c). We use the same objectives $J(x)$, $R(\theta)$ and $S(\theta)$ as in the previous experiment. To achieve an autonomous learning we used markers on the door to measure if it opened successful and added a simple motion that closes the door after each trial. This allowed the robot to perform the learning on its own without human intervention. The parameters of the regression GP g_R we used are $l = 0.042$, $\sigma_{sf} = 0.168$ and $\sigma = 0.012$. we set $l = 0.02$, $\sigma_{sf} = 10$ and a constant prior mean of -7 for the classification GP g_S.

We compared to a CORL + CMA-ES variant, where both CMA-ES and PIBU operate on the low-dimensional projection θ exploiting the combination with the analytic motion optimization. The resulting return and success function are shown in Figure 7(b). Our method converged in this run after 40 rollouts. From these 40 rollouts 26 were successes and 14 were failures. The blue dots are successful rollouts, the red dots are failures and the magenta star shows the best parameter. The red line denotes the classifier boundary.

The results are shown in the table in Figure 7(f). We use as performance measure the highest objective, the failure rate with the system and the maximum distance to the safety region. All values are reported as mean and standard deviation over four runs. It can be seen that CORL + PIBU reaches a lower failure rate with a very low standard deviation. The failures of PIBU are also closer to the safety region than CMA-ES. This results from the fact that the boundary is explored with our acquisition function (see Equation (24)). CORL + CMA-ES also finds a slightly worse policy than CORL. We tried alternative approaches that do not rely on this low-dimensional projection and the combination with an analytic motion optimizer: We performed experiments with dynamic movement primitives and PoWER similar to Kober and Peters (2008). For this we parameterized the shape and goal of the DMP, leading to a 96 dimensional parameter space. However, we could not achieve a noticeable learning performance after 150 iterations. We assume that the black-box return function that combines the amount of forces with path smoothness is not informative enough for this large parameter space. This reinforces the motivation for our general approach of dissecting objectives into high-dimensional analytical and low-dimensional black-box parts.

In a previous experiment (Englert and Toussaint 2015), we applied IKKT on the same skill from multiple demonstrations. We were able to robustly generate motions with these parameters that generalize to different initial positions and different final door angles (see Figure 7(d)–(e)). The demonstration, learning behavior and resulting motions are shown in a video.

6.4 Lockbox

A further experiment we conducted is the manipulation of a linear joint of a lockbox (see Figure 8(a)). The lockbox was designed to research different physical exploration strategies (Baum et al. 2017) and consists of multiple rotational and
translational degrees of freedom that lock each other. In this experiment, we focus on a translational joint that we want to open with a sliding motion. The low-dimensional projection is the vertical location of the contact point and the sliding velocity. The goal is to manipulate the translational joint, such that the next joint is unlocked. We evaluate the success constraint by executing another motion that checks if the next joint can be manipulated (see Figure 8(b)). Further, we also added a motion that closes both joints again, which allowed the robot to achieve a complete autonomous learning without human supervision (see video1). We used the same GP hyperparameter and objectives as in the previous section. CORL + PIBU converged after 59 iterations with 48 successes and 11 failures. The total interaction time of the robot was 61 minutes. In Figure 8(c) the learning curve (black line) and success rate (red dashed line) are visualized.

7 Conclusion

In this work, we presented an approach to learn manipulation skills from a single demonstration with the goal to achieve wide generalization abilities and a high performance. We incorporated the structure of manipulation skills in our approach by using a low-dimensional projection of the motion that parametrizes the interaction with the environment. We used analytic motion optimization to improve the full motion and episodic reinforcement learning to improve the interactions. The advantage of this separation is that it was not required to specify models for the interactions, which is very difficult in practice. Our approach requires as input a single demonstration of the skill that is bootstrapped with reinforcement to become more robust and efficient before inverse optimal control is used to learn a constrained optimization problem. This design allowed us to reduce the required input and supervision of the human. Using a constrained motion optimization representation allowed us to generalize the skill w.r.t. different initial states and to control the skill w.r.t. desired states of the external degrees of freedom.

We evaluated our algorithm on a synthetic benchmark function where we compared it to alternative learning methods. The results indicate that the combination of optimization and learning leads to a faster convergence. They also denote that the integration of a success constraint results in a safer learning by avoiding very bad samples outside the feasible region. We also demonstrated our algorithm on multiple real-robot experiments. Thereby we used a variety of different low-dimensional projections to parametrize the interaction with the environment. Our algorithm improved all three skills w.r.t. the objectives and learned a constrained optimization problem that generalized the skill to new scenarios.

In future work it is important to investigate generalization abilities regarding the skill transfer to different environments (e.g., different geometrical/physical entities) that avoids a learning from scratch for each environment. An interesting questions is which kind of representation is most suitable for the transfer between different environments. Such a transfer would further improve the abilities of robots in our world and focus the learning on the fine-tuning for the new environments. Another goal of future research should be towards a more integrated learning algorithm that makes efficient use of the collected data to further improve the skill and knowledge of the world. For example, the data we collect during learning can be used to update the limits, unlocking mechanisms and location of external degrees of freedom (Kulick et al. 2015; Sturm et al. 2011). A further goal of us is to use the learned skills in higher-level symbolic planning methods. We think that the constrained optimization problem is a suitable representation since it allows to use the skill inside a symbolic planning problem for a wide range of scenarios.

Acknowledgements

This work was supported by the DFG under grant TO 409/9-1.

References

Toussaint M (2017) A tutorial on Newton methods for constrained trajectory optimization and relations to SLAM.

