Reinforcement Learning

Hierarchical Reinforcement Learning

Action hierarchy, hierarchical RL, semi-MDP

Vien Ngo
MLR, University of Stuttgart
Outline

- Hierarchical reinforcement learning
- Learning subgoals/hierarchy
Accelerating Reinforcement learning

- Temporal abstraction
- Goal/State Abstraction
Accelerating Reinforcement learning: Abstraction

- Temporal abstraction
- Goal/State Abstraction
Temporal Abstraction

- Dealing with multiple-time step "macro" actions.
- Advantages:
 - Only exploring/computing values for interesting states (e.i. subgoals, …)
 - Transfer learning across problems/regions.
Hierarchical reinforcement learning

Three approaches to HRL

• Options: Sutton (temporal + state abstraction)
• Finite state controller: Parr & Russel (temporal abstraction)
• Given an action hierarchy: MAXQ (temporal + state abstraction)
Semi-Markov decision process
Semi-Markov decision process

SMDP = \{S, A, \mathcal{T}, \mathcal{R}\},

- State space S
- Action space A
- Transition function $\mathcal{T}(s, a, s', t) = p(s', t|s, a)$
- State space $\mathcal{R}(s, a)$
SMDP

Semi-Markov decision processes (SMDPs) generalize MDPs by

- allowing the decision maker to choose actions whenever the system state changes
- modeling the system evolution in continuous time
- allowing the time spent in a particular state to follow an arbitrary probability distribution

The system state may change several times between decision epochs; only the state at a decision epoch is relevant to the decision maker.
Semi-Markov Decision Process (SMDP)

- $T(s, a, s', t) = P(s', t|s, a)$ defines the joint probability of a next state, and terminal time.
Bellman equations for SMDP

- Consider discrete-time SMDP:

\[
V^*(s) = \max_a \left[R(s, a) + \sum_{s', \tau} \gamma^\tau p(s', \tau | s, a) V^*(s') \right]
\]

\[
Q^*(s, a) = R(s, a) + \sum_{s', \tau} \gamma^\tau p(s', \tau | s, a) \max_b Q^*(s', b)
\]
Bellman equations for SMDP

- Consider discrete-time SMDP:

\[
V^*(s) = \max_a \left[R(s, a) + \sum_{s', \tau} \gamma^\tau p(s', \tau | s, a) V^*(s') \right]
\]

\[
Q^*(s, a) = R(s, a) + \sum_{s', \tau} \gamma^\tau p(s', \tau | s, a) \max_b Q^*(s', b)
\]

- Dynamic Programming algorithms are correspondingly extended to SMDPs (Howard, 1971; Puterman, 1994)
Example: Taxi Problem

![Taxi Grid Diagram]
Example 2: SMDP

Sutton, Precup, Singh, 1999
Example 2: SMDP

Sutton, Precup, Singh, 1999
Example 2: SMDP

Sutton, Precup, Singh, 1999
Options

Sutton, Precup, Singh, 1999
Options

An option is a triple $o = \langle \mathcal{I}, \pi, \beta \rangle$

- \mathcal{I}: initiation set.
- $\pi: S \times A \mapsto [0, 1]$: option’s policy
- $\beta: S \mapsto [0, 1]$: termination condition
Options

- MDP
- SMDP
- Options over MDP
Value Functions for Options

option’s policy: π_i; global policy: μ

- Denote
 - reward part of option:
 \[
 r(s, o) = E\left\{ r_{t+1} + \gamma r_{t+2} + \gamma^2 r_{t+3} + \ldots + \gamma^k r_{t+k} \mid o, s_t = s \right\}
 \]
 - prediction-state part:
 \[
 p(s' \mid s, o) = \sum_{k=1}^{\infty} p(s', k \mid s, o) \gamma^k
 \]

- Global policy’s value function
 \[
 V^\mu(s) = E\left\{ r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} \ldots \mid \mu, s_t = s \right\}
 = E\left\{ r_{t+1} + \gamma r_{t+2} + \gamma^2 r_{t+3} + \ldots + \gamma^{k-1} r_{t+k} + \gamma^k V^\mu(s_{t+k}) \mid \mu, s_t = s \right\}
 = E\left[r(s, o) + \sum_{s_{t+k}} p(s_{t+k} \mid s, o) V^\mu(s') \mid \mu, s_t = s \right]
 \]
$Q^\mu(s, o) = \mathbb{E}\left\{ r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} \ldots | o\mu, s_t = s \right\}$

$= \mathbb{E}\left\{ r_{t+1} + \gamma r_{t+2} + \gamma^2 r_{t+3} + \ldots + \gamma^{k-1} r_{t+k} + \gamma^k V^\mu(s_{t+k}) | \mu, s_t = s \right\}$

$= \mathbb{E}\left\{ r_{t+1} + \gamma r_{t+2} + \gamma^2 r_{t+3} + \ldots + \gamma^{k-1} r_{t+k} + \text{max}_{o'} \mu(s_{t+k}, o') Q^\mu(s_{t+k}, o') | o\mu, s_t = s \right\}$

$= \mathbb{E}\left\{ r(s, o) + \sum_{o'} p(s_{t+k}|s, o) \text{max}_{o'} \mu(s_{t+k}, o') Q^\mu(s_{t+k}, o') \right\}$
Options: Learning

- SMDP Q-learning: given the set of defined options.
 - execute the current selected option (e.g. use epsilon greedy $Q(s, o)$) to termination.
 - compute $r(s_t, o)$, then update $Q(s_t, o)$ as Q-learning/SARSA.
Options: Learning

- SMDP Q-learning: given the set of defined options.
 - execute the current selected option (e.g. use epsilon greedy $Q(s, o)$) to termination.
 - compute $r(s_t, o)$, then update $Q(s_t, o)$ as Q-learning/SARSA.

- Intra-option Q-learning: partially defined options
 - after each primitive action, update all the options (off-policy learning).
 - converge to correct values, ”under same assumptions as 1-step Q-learning” (Sutton)
MAXQ

T. G. Dietterich (2000) "Hierarchical Reinforcement Learning with the MAXQ Value Function Decomposition", JAIR.
MAXQ

- The underlying MDP \mathcal{M} is decomposed into a set of substask $\mathcal{M}_0, \mathcal{M}_1, \ldots, \mathcal{M}_n$.
- \mathcal{M}_0 is the root subtask. (solving \mathcal{M}_0 solves \mathcal{M}).
- Each substask might consist of either primitive actions or other substasks.

example: TAXI problem.
MAXQ: Value Decomposition

- Consider all descendents a of a subtask M_i (or option M_i)

$$V^\mu(i, s) = \mathbb{E}\left\{ r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} ... | \mu, s_t = s \right\}$$

(until M_i terminates)

$$= \mathbb{E}\left\{ r_{t+1} + \gamma r_{t+2} + ... + \gamma^{k-1} r_{t+k} + \gamma^k V^\mu(i, s_{t+k}) | \mu, s_t = s \right\}$$

$$= \mathbb{E}\left[r(s, \pi_i(s)) + \gamma^{k-1} r_{t+k} + \gamma^k V^\mu(i, s_{t+k}) | \mu, s_t = s \right]$$

$$= V^\mu(\pi_i(s), s) + \sum_{s', N} p(s', N|s, \pi_i(s)) \gamma^N V^\mu(i, s')$$

reward term

$$C^\mu(i, s, \pi_i(s))(\text{completion term})$$

$$Q^\mu(i, s, a) = V^\mu(a, s) + C^\mu(i, s, a)$$

- The reward term:

$$V^\mu(i, s) = \begin{cases}
Q^\mu(i, s, \pi_i(s)) & \text{If } i \text{ is a macro action} \\
\sum_{s'} P(s'|s, a) r(s'|s, a) & \text{If } i \text{ is an primitive action}
\end{cases}$$
• The completion term $C^\mu(i, s, a)$ is the expected discounted cumulative reward of completing subtask M_i after taking subroutine M_a in state s.
• The completion term $C^\mu(i, s, a)$ is the expected discounted cumulative reward of completing subtask \mathcal{M}_i after taking subroutine \mathcal{M}_a in state s.

• It recursively decompose $V^\mu(0, s)$ into value functions for $\mathcal{M}_1, \mathcal{M}_2, \ldots, \mathcal{M}_n$.
The completion term $C^\mu(i, s, a)$ is the expected discounted cumulative reward of completing subtask M_i after taking subroutine M_a in state s.

It recursively decompose $V^\mu(0, s)$ into value functions for M_1, M_2, \ldots, M_n.

In general:

$$V^\mu(0, s) = V^\mu(a_m, s) + C^\mu(a_{m-1}, s, a_m) + \ldots + C^\mu(a_1, s, a_2) + C^\mu(0, s, a_1)$$

where a_0, a_1, \ldots, a_m is a sequence of taken substasks by a hierarchical policy going from Root M_0.

For learning: only need to store C functions for non-primitive actions, and V for primitive actions.
Example of MAXQ value decomposition

\[V^\pi(0, s) \]
\[V^\pi(a_1, s) \]
\[V^\pi(a_{m-1}, s) \]
\[V^\pi(a_m, s) \]
\[C^\pi(a_{m-1}, s, a_m) \]

\[r_1 \quad r_2 \quad r_3 \quad r_4 \quad r_5 \]
\[r_8 \quad r_9 \quad r_{10} \]
\[r_{11} \quad r_{12} \quad r_{13} \quad r_{14} \]

\(r_1, r_2, \ldots, r_{14} \) is a sequence of rewards w.r.t primitive actions at times 1, 2, \ldots, 14.
MAXQ: Learning Algorithm

MAXQ-0 learning algorithm

- Given action hierarchy.
- Each subtask has zero pseudo terminal reward.
MAXQ-0 Learning Algorithm

Initialize $V(i, s)$ (for all primitive i) and $C(i, s, j)$ (for all non-primitive i, and descendents j of i) arbitrarily.

MAXQ-0(Node i, State s)

1: if i is primitive then
2: execute i, receive r, s'
3: $V_{t+1}(i, s) = (1 - \alpha)V_t(i, s) + \alpha r_t$
4: return 1
5: else
6: $steps = 0$
7: while i not terminates do
8: Choose $a \sim \pi_i(s)$ (e.g. arg max$_b Q(i, s, b)$))
9: call $N = \text{MAXQ-0}(a, s)$ (recursive call)
10: observe s'
11: $C_{t+1}(i, s, a) = (1 - \alpha)C_t(i, s, a) + \alpha \gamma^N . V_t(i, s')$
12: $steps = steps + N$
13: $s = s'$
14: return steps
MAXQ-0 Learning Algorithm

- Compute $V_t(i, s')$ if i is non-primitive?
MAXQ-0 Learning Algorithm

- Compute $V_t(i, s')$ if i is non-primitive?

$$V_t(i, s) = \begin{cases} \max_a Q_t(i, s, a) & \text{If } i \text{ is a macro action} \\ V_t(i, s) & \text{If } i \text{ is an primitive action} \end{cases}$$

$$Q_t(i, s, a) = V_t(a, s) + C_t(i, s, a)$$
MAXQ: Learning Algorithm

MAXQ-Q learning algorithm

- Given action hierarchy.
- When each subtask has arbitrary non-zero pseudo reward \tilde{R}_i.
- MAXQ-Q introduces one more completion function for each subtask to use inside itself.
MAXQ-Q Learning Algorithm

Initialize $V(i, s)$ (for all primitive i) and $C(i, s, j)$ and $\tilde{C}(i, s, j)$ (for all non-primitive i, and descendents j of i) arbitrarily.

MAXQ-Q(Node i, State s)

1: if i is primitive then
2: execute i, receive r, s'
3: $V_{t+1}(i, s) = (1 - \alpha)V_t(i, s) + \alpha r_t$
4: else
5: $steps = 0$
6: while i not terminates do
7: Choose $a \sim \pi_i(s)$ (arg max$_{a'}[\tilde{C}(i, s', a') + V(i, s')]$)
8: call $N = \text{MAXQ-Q}(a, s)$ (recursive call)
9: observe s'
10: $a^* = \text{arg max}_{a'}[\tilde{C}(i, s', a') + V(i, s')]$
11: $\tilde{C}_{t+1}(i, s, a) = (1 - \alpha)\tilde{C}_t(i, s, a) + \alpha.\gamma^N \left(\bar{R}_i(s') + \tilde{C}_t(i, s', a^*) + V_t(a^*, s') \right)$
12: $C_{t+1}(i, s, a) = (1 - \alpha)C_t(i, s, a) + \alpha.\gamma^N \left(C_t(i, s', a^*) + V_t(a^*, s') \right)$
13: $steps = steps + N$
14: $s = s'$
Optimality in HRL?
Optimality in HRL?

hierarchically optimal vs. recursively optimal

- Hierarchical optimality: The learnt policy is the best policy consistent with the given hierarchy. Task’s policy depends not only on its children’s policies, but also on its context.

- Recursive optimality: The policy for a parent task is optimal given the learnt policies of its children. (Context-free task’s policy).
Optimality in HRL?

hierarchically optimal vs. recursively optimal

- Hierarchical optimality: The learnt policy is the best policy consistent with the given hierarchy. Task’s policy depends not only on its children’s policies, but also on its context.

- Recursive optimality: The policy for a parent task is optimal given the learnt policies of its children. (Context-free task’s policy).

 – The context-free policies offer state abstraction/transfer learning better, which provides common macro actions to many other tasks.
Optimality in HRL

(an example from a tutorial of Dietterich).
Optimality: in Options

- If action space consists of both primitive actions and options, then it converges to an optimal policy.
- Otherwise, options with SMDP learning was proved to converge to a hierarchically optimal policy.

(an example from a tutorial of Dietterich).
Optimality: in MAXQ

(an example from a tutorial of Dietterich).
Optimality: in MAXQ

- MAXQ0 is recursively optimal, but MAXQ is hierarchically optimal

(an example from a tutorial of Dietterich)
Optimality in HRL?

- Options learns a hierarchically optimal policy.
- MAXQ learns a recursively optimal policy.
 - MAXQ can obtain a policy which has hierarchical optimality with good design of subtask or with pseudo-reward learning.
Hierarchy/subgoal learning
Subgoal learning

- Creating useful options randomly/heuristically, then adding gradually.
Subgoal learning

- Creating useful options randomly/heuristically, then adding gradually.
- Creating an option/subgoal w.r.t a bottleneck (commonalities across multiple paths to a solution).
Hierarchy/subgoal learning

Barto et. al. (2004, intrinsically motivated learning)
Hengst, 2002. (also use bottleneck)
Neville Mehta et. al. 2008 (using DBN)
etc.
Human hierarchical decision making

JF Ribas-Fernandes, A Solway, C Diuk, JT McGuire, AG Barto, Y Niv & MM Botvinick