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Cart pole example

x

u

θ

p

state x = (p, ṗ, θ, θ̇)

θ̈ =
g sin(θ) + cos(θ)

[
−c1u− c2θ̇2 sin(θ)

]
4
3 l − c2 cos2(θ)

p̈ = c1u+ c2

[
θ̇2 sin(θ)− θ̈ cos(θ)

]
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Control Theory

• Concerns controlled systems of the form

ẋ = f(x, u) + noise(x, u)

and a controller of the form

π : (x, t) 7→ u

• We’ll neglect stochasticity here

• When analyzing a given controller π, one analyzes closed-loop
system as described by the differential equation

ẋ = f(x, π(x, t))

(E.g., analysis for convergence & stability)
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Core topics in Control Theory

• Stability*
Analyze the stability of a closed-loop system
→ Eigenvalue analysis or Lyapunov function method

• Controllability*
Analyze which dimensions (DoFs) of the system can actually in principle be
controlled

• Transfer function
Analyze the closed-loop transfer function, i.e., “how frequencies are
transmitted through the system”. (→ Laplace transformation)

• Controller design
Find a controller with desired stability and/or transfer function properties

• Optimal control*
Define a cost function on the system behavior. Optimize a controller to
minimize costs
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Control Theory references

• Robert F. Stengel: Optimal control and estimation
Online lectures:
http://www.princeton.edu/~stengel/MAE546Lectures.html (esp.
lectures 3,4 and 7-9)

• From robotics lectures:
Stefan Schaal’s lecture Introduction to Robotics: http://www-clmc.
usc.edu/Teaching/TeachingIntroductionToRoboticsSyllabus

Drew Bagnell’s lecture on Adaptive Control and Reinforcement
Learning http://robotwhisperer.org/acrls11/

Jonas Buchli’s lecture on Optimal & Learning Control for Autonomous
Robots http://www.adrl.ethz.ch/doku.php/adrl:education:

lecture:fs2015
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Outline

• We’ll first consider optimal control
Goal: understand Algebraic Riccati equation
significance for local neighborhood control

• Then controllability & stability
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Optimal control
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Optimal control (discrete time)

Given a controlled dynamic system

xt+1 = f(xt, ut)

we define a cost function

Jπ =

T∑
t=0

c(xt, ut) + φ(xT )

where x0 and the controller π : (x, t) 7→ u are given, which determines
x1:T and u0:T
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Dynamic Programming & Bellman principle

An optimal policy has the property that whatever the initial state and
initial decision are, the remaining decisions must constitute an optimal
policy with regard to the state resulting from the first decision.

Start
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“V (state) = minedge[c(edge) + V (next-state)]”
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Bellman equation (discrete time)

• Define the value function or optimal cost-to-go function

Vt(x) = min
π

[ T∑
s=t

c(xs, us) + φ(xT )
]
xt=x

• Bellman equation

Vt(x) = minu

[
c(x, u) + Vt+1(f(x, u))

]
The argmin gives the optimal control signal: π∗t (x) = argminu

[
· · ·

]
Derivation:

Vt(x) = min
π

[ T∑
s=t

c(xs, us) + φ(xT )
]
xt=x

= min
ut

[
c(xt, ut) + min

π
[

T∑
s=t+1

c(xs, us) + φ(xT )]
]

= min
ut

[
c(xt, ut) + Vt+1(f(xt, ut))

]
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Optimal Control (continuous time)

Given a controlled dynamic system

ẋ = f(x, u)

we define a cost function with horizon T

Jπ =

∫ T

0

c(x(t), u(t)) dt+ φ(x(T ))

where the start state x(0) and the controller π : (x, t) 7→ u are given,
which determine the closed-loop system trajectory x(t), u(t) via
ẋ = f(x, π(x, t)) and u(t) = π(x(t), t)
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Hamilton-Jacobi-Bellman equation (continuous time)

• Define the value function or optimal cost-to-go function

V (x, t) = min
π

[ ∫ T

t

c(x(s), u(s)) ds+ φ(x(T ))
]
x(t)=x

• Hamilton-Jacobi-Bellman equation

− ∂
∂tV (x, t) = minu

[
c(x, u) + ∂V

∂x f(x, u)
]

The argmin gives the optimal control signal: π∗(x) = argminu

[
· · ·

]
Derivation: Apply the discrete-time Bellman equation for Vt and Vt+dt:

V (x, t) = min
u

[ ∫ t+dt

t
c(x, u) dt+ V (x(t+ dt), t+ dt)

]
= min

u

[ ∫ t+dt

t
c(x, u) dt+ V (x, t) +

∫ t+dt

t

dV (x, t)

dt
dt
]

0 = min
u

[ ∫ t+dt

t

(
c(x, u) +

∂V

∂t
+
∂V

∂x
ẋ
)
dt
]

0 = min
u

[
c(x, u) +

∂V

∂t
+
∂V

∂x
f(x, u)

]
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Infinite horizon case

Jπ =

∫ ∞
0

c(x(t), u(t)) dt

• This cost function is stationary (time-invariant)!
→ the optimal value function is stationary (V (x, t) = V (x))
→ the optimal control signal depends on x but not on t
→ the optimal controller π∗ is stationary

• The HJB and Bellman equations remain “the same” but with the same
(stationary) value function independent of t:

0 = min
u

[
c(x, u) +

∂V

∂x
f(x, u)

]
(cont. time)

V (x) = min
u

[
c(x, u) + V (f(x, u))

]
(discrete time)

The argmin gives the optimal control signal: π∗(x) = argminu

[
· · ·

]
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Infinite horizon examples

• Cart-pole balancing:
– You always want the pole to be upright (θ ≈ 0)
– You always want the car to be close to zero (x ≈ 0)
– You want to spare energy (apply low torques) (u ≈ 0)
You might define a cost

Jπ =

∫ ∞
0

||θ||2 + ε||x||2 + ρ||u||2

• Reference following:
– You always want to stay close to a reference trajectory r(t)
Define x̃(t) = x(t)− r(t) with dynamics ˙̃x(t) = f(x̃(t) + r(t), u)− ṙ(t)
Define a cost

Jπ =

∫ ∞
0

||x̃||2 + ρ||u||2

• Many many problems in control are framed this way
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Comments

• The Bellman equation is fundamental in optimal control theory, but also
Reinforcement Learning

• The HJB eq. is a differential equation for V (x, t) which is in general
hard to solve

• The (time-discretized) Bellman equation can be solved by Dynamic
Programming starting backward:

VT (x) = φ(x) , VT -1(x) = min
u

[
c(x, u) + VT (f(x, u))

]
etc.

But it might still be hard or infeasible to represent the functions Vt(x)

over continuous x!

• Both become significantly simpler under linear dynamics and quadratic
costs:

→ Riccati equation

15/45



Linear-Quadratic Optimal Control

linear dynamics
ẋ = f(x, u) = Ax+Bu

quadratic costs

c(x, u) = x>Qx+ u>Ru , φ(xT ) = x>TFxT

• Note: Dynamics neglects constant term; costs neglect linear and
constant terms. This is because
– constant costs are irrelevant
– linear cost terms can be made away by redefining x or u
– constant dynamic term only introduces a constant drift

16/45



Linear-Quadratic Control as Local Approximation

• LQ control is important also to control non-LQ systems in the
neighborhood of a desired state!

Let x∗ be such a desired state (e.g., cart-pole: x∗ = (0, 0, 0, 0))
– linearize the dynamics around x∗

– use 2nd order approximation of the costs around x∗

– control the system locally as if it was LQ
– pray that the system will never leave this neighborhood!
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Riccati differential equation = HJB eq. in LQ case

• In the Linear-Quadratic (LQ) case, the value function always is a
quadratic function of x!

Let V (x, t) = x>P (t)x, then the HJB equation becomes

− ∂

∂t
V (x, t) = min

u

[
c(x, u) +

∂V

∂x
f(x, u)

]
−x>Ṗ (t)x = min

u

[
x>Qx+ u>Ru+ 2x>P (t)(Ax+Bu)

]
0 =

∂

∂u

[
x>Qx+ u>Ru+ 2x>P (t)(Ax+Bu)

]
= 2u>R+ 2x>P (t)B

u∗ = −R-1B>Px

⇒ Riccati differential equation
−Ṗ = A>P + PA− PBR-1B>P +Q
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Riccati differential equation

−Ṗ = A>P + PA− PBR-1B>P +Q

• This is a differential equation for the matrix P (t) describing the
quadratic value function. If we solve it with the finite horizon constraint
P (T ) = F we solved the optimal control problem

• The optimal control u∗ = −R-1B>Px is called Linear Quadratic
Regulator

Note: If the state is dynamic (e.g., x = (q, q̇)) this control is linear in the
positions and linear in the velocities and is an instance of PD control
The matrix K = R-1B>P is therefore also called gain matrix
For instance, if x(t) = (q(t)− r(t), q̇(t)− ṙ(t)) for a reference r(t) and
K =

[
Kp Kd

]
then

u∗ = Kp(r(t)− q(t)) +Kd(ṙ(t)− q̇(t))
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Riccati equations

• Finite horizon continuous time
Riccati differential equation

−Ṗ = A>P + PA− PBR-1B>P +Q , P (T ) = F

• Infinite horizon continuous time
Algebraic Riccati equation (ARE)

0 = A>P + PA− PBR-1B>P +Q

• Finite horizon discrete time (Jπ =
∑T
t=0 ||xt||2Q + ||ut||2R + ||xT ||2F )

Pt-1 = Q+A>[Pt − PtB(R+B>PtB)-1B>Pt]A , PT = F

• Infinite horizon discrete time (Jπ =
∑∞
t=0 ||xt||2Q + ||ut||2R)

P = Q+A>[P − PB(R+B>PB)-1B>P ]A
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Example: 1D point mass
• Dynamics:

q̈(t) = u(t)/m

x =

q
q̇

 , ẋ =

q̇
q̈

 =

 q̇

u(t)/m

 =

0 1

0 0

x+

 0

1/m

u

= Ax+Bu , A =

0 1

0 0

 , B =

 0

1/m



• Costs:

c(x, u) = ε||x||2 + %||u||2 , Q = εI , R = %I

• Algebraic Riccati equation:

P =

a c

c b

 , u∗ = −R-1B>Px =
−1

%m
[cq + bq̇]

0 = A>P + PA− PBR-1B>P +Q

=

0 0

a c

 +

0 a

0 c

− 1

%m2

c
2 bc

bc b2

 + ε

1 0

0 1


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Example: 1D point mass (cont.)

• Algebraic Riccati equation:

P =

a c

c b

 , u∗ = −R-1B>Px =
−1

%m
[cq + bq̇]

0 =

0 0

a c

 +

0 a

0 c

− 1

%m2

c
2 bc

bc b2

 + ε

1 0

0 1



First solve for c = m
√
%ε, then for b = m

√
%
√

2c+ ε and a = 1
%m2 bc.

• The Algebraic Riccati equation is usually solved numerically. (E.g. are,
care or dare in Octave)
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Optimal control comments

• HJB or Bellman equation are very powerful concepts

• Even if we can solve the HJB eq. and have the optimal control, we still
don’t know how the system really behaves?
– Will it actually reach a “desired state”?
– Will it be stable?
– Is it actually “controllable” at all?
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Relation to other topics
• Optimal Control:

min
π

Jπ =

∫ T

0

c(x(t), u(t)) dt+ φ(x(T ))

• Inverse Kinematics:

min
q

f(q) = ||q − q0||2W + ||φ(q)− y∗||2C

• Operational space control:

min
u

f(u) = ||u||2H + ||φ̈(q)− ÿ∗||2C

• Trajectory Optimization: (hard constraints could be included)

min
q0:T

f(q0:T ) =

T∑
t=0

||Ψt(qt-k, .., qt)||2 +

T∑
t=0

||Φt(qt)||2

• Reinforcement Learning:
– Markov Decision Processes↔ discrete time stochastic controlled
system P (xt+1 |ut, xt)
– Bellman equation→ Basic RL methods (Q-learning, etc) 24/45



Controllability
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Controllability

• As a starting point, consider the claim:
“Intelligence means to gain maximal controllability over all degrees of
freedom over the environment.”

Note:
– controllability (ability to control) 6= control
– What does controllability mean exactly?

• I think the general idea of controllability is really interesting
– Linear control theory provides one specific definition of controllability,
which we introduce next..
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Controllability

• Consider a linear controlled system

ẋ = Ax+Bu

How can we tell from the matrices A and B whether we can control x
to eventually reach any desired state?

• Example: x is 2-dim, u is 1-dim:
ẋ1
ẋ2

 =

0 0

0 0


x1
x2

 +

1

0

u

Is x “controllable”?

ẋ1
ẋ2

 =

0 1

0 0


x1
x2

 +

0

1

u

Is x “controllable”?
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Controllability
We consider a linear stationary (=time-invariant) controlled system

ẋ = Ax+Bu

• Complete controllability: All elements of the state can be brought
from arbitrary initial conditions to zero in finite time

• A system is completely controllable iff the controllability matrix

C :=
[
B AB A2B · · · An-1B

]
has full rank dim(x) (that is, all rows are linearly independent)

• Meaning of C:
The ith row describes how the ith element xi can be influenced by u
“B”: ẋi is directly influenced via B
“AB”: ẍi is “indirectly” influenced via AB (u directly influences some ẋj

via B; the dynamics A then influence ẍi depending on ẋj)
“A2B”:

...
x i is “double-indirectly” influenced

etc...
Note: ẍ = Aẋ+Bu̇ = AAx+ABu+Bu̇

...
x = A3x+A2Bu+ABu̇+Bü

28/45



Controllability
We consider a linear stationary (=time-invariant) controlled system
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Note: ẍ = Aẋ+Bu̇ = AAx+ABu+Bu̇

...
x = A3x+A2Bu+ABu̇+Bü 28/45



Controllability

• When all rows of the controllability matrix are linearly independent⇒
(u, u̇, ü, ...) can influence all elements of x independently

• If a row is zero→ this element of x cannot be controlled at all

• If 2 rows are linearly dependent→ these two elements of x will remain
coupled forever
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Controllability examples

ẋ1
ẋ2

 =

0 0

0 0


x1
x2

 +

1

1

u C =

1 0

1 0

 rows linearly dependent

ẋ1
ẋ2

 =

0 0

0 0


x1
x2

 +

1

0

u C =

1 0

0 0

 2nd row zero

ẋ1
ẋ2

 =

0 1

0 0


x1
x2

 +

0

1

u C =

0 1

1 0

 good!
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Controllability

Why is it important/interesting to analyze controllability?

• The Algebraic Riccati Equation will always return an “optimal” controller
– but controllability tells us whether such a controller even has a
chance to control x

• “Intelligence means to gain maximal controllability over all degrees of
freedom over the environment.”
– real environments are non-linear
– “to have the ability to gain controllability over the environment’s DoFs”
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Stability
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Stability

• One of the most central topics in control theory

• Instead of designing a controller by first designing a cost function and
then applying Riccati,
design a controller such that the desired state is provably a stable
equilibrium point of the closed loop system
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Stability

• Stability is an analysis of the closed loop system. That is: for this
analysis we don’t need to distinguish between system and controller
explicitly. Both together define the dynamics

ẋ = f(x, π(x, t)) =: f(x)

• The following will therefore discuss stability analysis of general
differential equations ẋ = f(x)

• What follows:
– 3 basic definitions of stability
– 2 basic methods for analysis by Lyapunov
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Aleksandr Lyapunov (1857–1918)
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Stability – 3 definitions
ẋ = f(x) with equilibrium point x0 = 0

• x0 is an equilibrium point ⇐⇒ f(x0) = 0

• Lyapunov stable or uniformly stable ⇐⇒

∀ε : ∃δ s.t. ||x(0)|| ≤ δ ⇒ ∀t : ||x(t)|| ≤ ε

(when it starts off δ-near to x0, it will remain ε-near forever)

• asymtotically stable ⇐⇒
Lyapunov stable and limt→∞ x(t) = 0

• exponentially stable ⇐⇒
asymtotically stable and ∃α, a s.t. ||x(t)|| ≤ ae−αt||x(0)||

(→ the “error” time integral
∫∞
0
||x(t)||dt ≤ a

α ||x(0)|| is bounded!)
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ẋ = f(x) with equilibrium point x0 = 0

• x0 is an equilibrium point ⇐⇒ f(x0) = 0

• Lyapunov stable or uniformly stable ⇐⇒

∀ε : ∃δ s.t. ||x(0)|| ≤ δ ⇒ ∀t : ||x(t)|| ≤ ε

(when it starts off δ-near to x0, it will remain ε-near forever)

• asymtotically stable ⇐⇒
Lyapunov stable and limt→∞ x(t) = 0

• exponentially stable ⇐⇒
asymtotically stable and ∃α, a s.t. ||x(t)|| ≤ ae−αt||x(0)||

(→ the “error” time integral
∫∞
0
||x(t)||dt ≤ a

α ||x(0)|| is bounded!) 36/45



Linear Stability Analysis

(“Linear”↔ “local” for a system linearized at the equilibrium point.)

• Given a linear system
ẋ = Ax

Let λi be the eigenvalues of A
– The system is asymptotically stable ⇐⇒ ∀i : real(λi) < 0

– The system is unstable ⇐⇒ ∃i : real(λi) > 0

– The system is marginally stable ⇐⇒ ∀i : real(λi) ≤ 0

• Meaning: An eigenvalue describes how the system behaves along one state
dimension (along the eigenvector):

ẋi = λixi

As for the 1D point mass the solution is xi(t) = aeλit and
– imaginary λi → oscillation
– negative real(λi)→ exponential decay ∝ e−|λi|t

– positive real(λi)→ exponential explosion ∝ e|λi|t
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Linear Stability Analysis: Example
• Let’s take the 1D point mass q̈ = u/m in closed loop with a PD
u = −Kpq −Kdq̇

• Dynamics:

ẋ =

q̇
q̈

 =

0 1

0 0

x+ 1/m

 0 0

−Kp −Kd

x

A =

 0 1

−Kp/m −Kd/m



• Eigenvalues:

The equation λ
q
q̇

 =

 0 1

−Kp/m −Kd/m


q
q̇

 leads to the equation

λq̇ = λ2q = −Kp/mq −Kd/mλq or mλ2 +Kdλ+Kp = 0 with solution
(compare slide 03:12)

λ =
−Kd ±

√
K2
d − 4mKp

2m

For K2
d − 4mKp negative, the real(λ) = −Kd/2m

⇒ Positive derivative gain Kd makes the system stable.
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Side note: Stability for discrete time systems

• Given a discrete time linear system

xt+1 = Axt

Let λi be the eigenvalues of A
– The system is asymptotically stable ⇐⇒ ∀i : |λi| < 1

– The system is unstable stable ⇐⇒ ∃i : |λi| > 1

– The system is marginally stable ⇐⇒ ∀i : |λi| ≤ 1
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Linear Stability Analysis comments

• The same type of analysis can be done locally for non-linear systems,
as we will do for the cart-pole in the exercises

• We can design a controller that minimizes the (negative) eigenvalues
of A:
↔ controller with fastest asymtopic convergence

This is a real alternative to optimal control!
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Lyapunov function method

• A method to analyze/prove stability for general non-linear systems is
the famous “Lyapunov’s second method”

Let D be a region around the equilibrium point x0

• A Lyapunov function V (x) for a system dynamics ẋ = f(x) is
– positive, V (x) > 0, everywhere in D except...

at the equilibrium point where V (x0) = 0

– always decreases, V̇ (x) = ∂V (x)
∂x ẋ < 0, in D except...

at the equilibrium point where f(x) = 0 and therefore V̇ (x) = 0

• If there exists a D and a Lyapunov function⇒ the system is
asymtotically stable

If D is the whole state space, the system is globally stable
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Lyapunov function method

• The Lyapunov function method is very general. V (x) could be
“anything” (energy, cost-to-go, whatever). Whenever one finds some
V (x) that decreases, this proves stability

• The problem though is to think of some V (x) given a dynamics!
(In that sense, the Lyapunov function method is rather a method of
proof than a concrete method for stability analysis.)

• In standard cases, a good guess for the Lyapunov function is either the
energy or the value function
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Lyapunov function method – Energy Example

• Let’s take the 1D point mass q̈ = u/m in closed loop with a PD
u = −Kpq −Kdq̇, which has the solution (slide 03:15):

q(t) = be−ξ/λ t eiω0

√
1−ξ2 t

• Energy of the 1D point mass:
(only the real part of q(t) is used to define V (t))

V (t) :=
1

2
mq̇2 =

1

2
mb2(−ξ/λ)2e−2ξ/λ t

V̇ (t) = mq̇q̈ = mb2(−ξ/λ)3e−2ξ/λ t

= −(2ξ/λ)e−2ξ/λ tV (0)

(using that the energy of an undamped oscillator is conserved)

• V̇ (t) < 0 ⇐⇒ ξ > 0 ⇐⇒ Kd > 0

Same result as for the eigenvalue analysis
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Lyapunov function method – value function Example

• Consider infinite horizon linear-quadratic optimal control. The solution
of the Algebraic Riccati equation gives the optimal controller.

• The value function satisfies

V (x) = x>Px

V̇ (x) = [Ax+Bu∗]>Px+ x>P [Ax+Bu∗]

u∗ = −R-1B>Px = Kx

V̇ (x) = x>[(A+BK)>P + P (A+BK)]x

= x>[A>P + PA+ (BK)>P + P (BK)]x

0 = A>P + PA− PBR-1B>P +Q

V̇ (x) = x>[PBR-1B>P −Q+ (PBK)>+ PBK]x

= −x>[Q+K>RK]x

(We could have derived this easier! x>Qx are the immediate state costs, and
x>K>RKx = u>Ru are the immediate control costs—and V̇ (x) = −c(x, u∗)!
See slide 13 bottom.)

• That is: V is a Lyapunov function if Q+K>RK is positive definite! 44/45



Observability & Adaptive Control

• When some state dimensions are not directly observable: analyzing
higher order derivatives to infer them.
Very closely related to controllability: Just like the controllability matrix
tells whether state dimensions can (indirectly) be controlled; an
observation matrix tells whether state dimensions can (indirectly) be
inferred.

• Adaptive Control: When system dynamics ẋ = f(x, u, β) has unknown
parameters β.
– One approach is to estimate β from the data so far and use optimal
control.
– Another is to design a controller that has an additional internal
update equation for an estimate β̂ and is provably stable. (See
Schaal’s lecture, for instance.)
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