Cordies & EONSON

Event processing for large-scale distributed games

Motivation
- Peer-to-peer architecture
 - Ad-hoc instantiation
 - Distributed games state
 - Low-latency communication required
 - Exchange of all state information that affects the player and its focus
- Main challenges
 - Responsiveness: Equal relative latency for all players
 - Consistency: Equal view for all players
 - Efficiency: Bandwidth consumption, computation of situations
- Solution’s required properties
 - Scalable for Massively Multiplayer Online Game
 - Capable of the responsiveness-consistency trade-off despite dynamic behaviour

Approach
- Use of two communication services
 - Content-based event communication and complex situation detection
 - Multicast: efficient game state communication between close objects

System model

Demonstration Scenario
- Efficiency by introducing game semantics in services
- Employed semantics: area of interest (AOI)
- Cordies
 - Distributed in-network detection of situations (movement, meet, depart), thus reducing bandwidth consumption
 - Distributed CORDIES instances detect situations occurring in separate AOIs, thus ensuring scalability
- EONSON
 - Overlay topology is dynamically restructured to reflect the inclusion relationship between the AOIs of game instances
 - Ensures that only the peers interested in an area participate in forwarding and filtering the corresponding events

Additional contributions
- QoS:
 - Event communication to fulfill latency requirements, individual bandwidth restrictions
 - Correlation detection to measure confidence in detected situations
- Security:
 - Authentication, authorization and weak confidentiality for content-based publish/subscribe

References
- Cordies: Gerald G. Koch et al.: Cordies: Expressive event correlation in distributed systems (DEBS’10)
- EONSON: M. Adnan Tanj et al.: Dynamic publish/subscribe to meet subscriber-defined delay and bandwidth constraints (EuroPar’10 – to appear)
- Planet m4: Torin Triebel et al.: Peer-to-peer voice communication for massively multiplayer online games (CONC’09)