Marc Toussaint


Marc Toussaint
Uni Stuttgart
Universitätsstraße 38
70569 Stuttgart, Germany
tel: +49 711 685 88376
room: 2.225; lab tel: 88262

Carola Stahl
tel: +49 711 685 88385
fax: +49 711 685 88250

RSS'18 best paper on Physical Manipulation
M. Toussaint, K. R. Allen, K. A. Smith, and J. B. Tenenbaum: Differentiable Physics and Stable Modes for Tool-Use and Manipulation Planning. In Proc. of Robotics: Science and Systems (R:SS 2018), 2018. [Accompanying Video] [Source Code].
I'm on leave from university
Starting from April 2017 I am on leave from university. I'll have other full time jobs during my leave and won't be able to respond to all Emails or personally accept/supervise students in Stuttgart for new projects.

Here some information for students: Starting from mid June, Daniel Hennes will be my substitute and will be responsible for all supervision of students, examinations, teaching, etc. Starting from April, Duy Nguyen-Tuong will teach the Machine Learning course and is also a contact person concerning MSc/BSc projects in the area of ML. Please also note that Jim Mainprice just started his own research group on human robot interaction within our department. All three of them are excellent researchers in the area of Machine Learning and Robotics! Please see our MLR group page on how to contact these people.

For your information:

  • From April 2017 til July 2017 I'm with Amazon Machine Learning/Robotics in Berlin. If you have a PhD and are interested in jobs at Amazon please contact me at
  • Starting July/Aug 2017 until July 2018 I'm at MIT as a guest scientist. My Email here is
video lectures
  • Brown Apr 18, 2018 Physical Reasoning and Admissible Symbols
  • MIT Sep 19, 2017 Sufficient Symbols to Make Optimization-Based Manipulation Planning Tractable
  • Tübingen Sep 5, 2013 Bandits, Active Learning, Bayesian RL and Global Optimization -- understanding the common ground
  • Barcelona, Sep 12, 2013 Decision Making and Planning (and model-free RL) as Probabilistic Inference
We are offering a new International Master in Computer Science with Major in Autonomous Systems (includes AI + Machine Learning + Robotics). Interested students please see the website on how to apply to this study program.
since 12/12 Full Prof. at University of Stuttgart; head of the Machine Learning and Robotics Lab.
10/10-11/12 Prof. (W1) at the Department of Math and Computer Science, FU Berlin; head of the Machine Learning and Robotics Lab at FU Berlin
3/07-10/10 head of the Machine Learning and Robotics group (Emmy Noether Programme) at the IDA lab (Klaus-Robert Müller), TU Berlin.
8/06-2/07 guest scientist at the Honda Research Institute, Offenbach.
6/04-6/06 post doc at the Machine Learning group (Chris Williams) and the Statistical Machine Learning and Motor Control group (Sethu Vijayakumar), University of Edinburgh.
4/00-5/04 PhD student (& brief post doc) at the Adaptive Systems group, Institut für Neuroinformatik (Werner von Seelen), Ruhr-Universität-Bochum.
6/98-3/00 student at the Cologne gravity group (Friedrich W. Hehl), Institute for Theoretical Physics, U Cologne.
current research interests
  • Our research focusses on the combination of decision theory and machine learning, motivated by applications in robotics. The goal are learning systems that are able to reason about their own state of knowledge (e.g., in a Bayesian way) and decide which actions might yield the most informative future data, make them learn even better and eventually solve problems. We address this in the form of Reinforcement Learning, Planning and Active Learning in probabilistic relational domains. Further, a growing focus of our lab are real-world robotic systems and joint symbolic and geometric planning, including trajectory optimization and optimal control methods.
  • Research in the intersections of modern AI (probabilistic reasoning, learning & planning), robotics and machine learning
  • Probabilistic approaches to planning, on symbolic (relational) as well as motion & control level
  • (Constrained) Optimization methods for robotics, reinforcement learning and machine learning in general
  • Active learning, experimental design and UCB/UCT type methods for autonomous (e.g.\ robot) exploration of complex domains
  • general Machine Learning: learning representations, Bayesian networks & graphical models