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In this technical note we derive an algorithm for
computing the moments of a truncated Gaussian
in high-dimensions. In principle, all of this is well
known and not novel. Herbrich has already an (unpub-
lished) technical note on EP with truncated Gaussians
at research.microsoft.com/pubs/74554/EP.pdf.
However, getting an efficient algorithm in high-
dimension is not so trivial. We derive one in this
note. The corresponding source code is available at
user.cs.tu-berlin.de/˜mtoussai/source-code/.
Our motivation is the application in the context of
Aproximate Inference Control (?), where we use ap-
proximate inference to compute trajectories under
hard constraints: Collision and joint avoidance implis
messages of the form of heavyside functions; using
Expectation Propagation with truncated Gaussians we
can approximate the motion posterior.

1 1D case

Let us first address the simple 1D case. The problem is
defined as follows: Let x ∈ R and g(x) = e−x2/2 and
θ(x) = [[x ≥ z]] (the heavyside function at z). We want to
compute a Gaussian approximation of g(x)θ(x). For this
we need to compute the moments of g(x)θ(x). For the
norm (0th moment) we have:∫ z
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2
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For the n-th moment:
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And hence for 2nd moment:
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√
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In summary, we have

norm n := M0 =
√
π/2 [1− erf(z/

√
2)] (12)

mean m := M1/M0 = e−z2/2/n (13)

variance v := M2/M0 −m2 = 1 + zm−m2 (14)

2 General case

We now have a n-dim Gaussian f(y) and heavyside func-
tion θ(y) along a hyperplane with normal c and offset d,

f(y) ∝ exp{−1
2
(y − a)>A-1 (y − a)} (15)

θ(y) = [[c>y − d ≥ 0]] (16)

where [[·]] is the indicator function. We transform this
problem such that the Gaussian becomes a standard
Gaussian and the constraint is aligned with the x-axis.
We need two transformations for this: first a linear trans-
form to standardize the Gaussian, then a rotation to align
with the x-axis. Let A = M>M be the Cholesky decom-
position (A-1 = M -1M−>) and we define x = M−>(y − a).
We have

f(x) = exp{−1
2
x>x} (17)
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Algorithm 1 Truncated Standard Gaussian
1: Input: z
2: Output: norm n, mean m, variance v
3: n =

p
π/2[1− erf(z

√
2)]

4: m = exp(−z2/2)/n

5: v = 1 + zm−m2

Algorithm 2 Truncate Gaussian
1: Input: mean a, covariance A, constraint coeffs c, d
2: Output: mean b, covariance B
3: MTM = A // Cholesky decomposition
4: z = (c>a+ d)/|Mc|
5: v = Mc/|Mc|
6: R = rotation onto v // as in equation (??)
7: (m, v) = Truncated Standard Gaussian(z)

8: b = M>R(m, 0, .., 0) + a

9: B = M>Rdiag(v, 1, .., 1)R>M

θ(x) = [[c>(M>x+ a− d) ≥ 0]] = [[v>x+ z ≥ 0]] ,
(18)

v := Mc/|Mc| , z := [c>(a− d)]/|Mc| (19)

Note that we defined v to be normalized. (If |Mc| is zero
the truncation has no effect or zero likelihood, depending
on whether c>a − d > 0 or c>a − d < 0, respectively.) We
compute a rotation matrix that rotates the unit vector e =
(1, 0, .., 0) onto v (implemented in array.cpp). We define
x′ = R-1x. We have v = Re and

f(x′) = exp{−1
2
x′>x′} (20)

θ(x′) = [[v>Rx′ + z ≥ 0]]

= [[(R-1v)>x′ + z ≥ 0]] = [[x′1 + z ≥ 0]] (21)

That is, θ(x′) truncates along the first axis in the x′ coor-
dinate system. Given the mean m and variance v of the
(−z)-truncated standard Gaussian, we have

f(x′) θ(x′) ≈ N(x′|b′, B′) (22)

b′ = (m, 0, .., 0) (23)

B′ = diag(v, 1, .., 1) (24)

We undo the transformation x′ = R-1M−>(y − a) and get
the result

f(y) θ(y) ≈ N(y|b, B) (25)

b = M>Rb′ + a (26)

B = M>RB′R>M (27)

which gives the mean and covariance of the truncated
Gaussian. The explicit algorithms are given below. The
figure illustrates the result of truncating a Gaussian in 2D
with the constraint [[x > 1]].
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Figure 1: Truncation of a Gaussian at the constraint [[x >
1]] in 2D.


