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Technical Note: Computing moments of a truncated Gaussian for

In this technical note we derive an algorithm for
computing the moments of a truncated Gaussian
in high-dimensions.  In principle, all of this is well
known and not novel. Herbrich has already an (unpub-
lished) technical note on EP with truncated Gaussians
at research.microsoft.com/pubs/74554/EP.pdf.
However, getting an efficient algorithm in high-
dimension is not so trivia. We derive one in this
note. The corresponding source code is available at
user.cs.tu-berlin.de/ mtoussai/source-code/.
Our motivation is the application in the context of
Aproximate Inference Control (?), where we use ap-
proximate inference to compute trajectories under
hard constraints: Collision and joint avoidance implis
messages of the form of heavyside functions; using
Expectation Propagation with truncated Gaussians we
can approximate the motion posterior.

1 1D case

Let us first address the simple 1D case. The problem is
defined as follows: Let z € R and g(z) = ¢ */2 and
0(z) = [[x > 2]] (the heavyside function at z). We want to
compute a Gaussian approximation of g(x)f(x). For this
we need to compute the moments of g(x)f(x). For the
norm (Oth moment) we have:
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And hence for 2nd moment:
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In summary, we have
norm n:= My = /7/2[1 — erf(z/V2)] (12)
mean m:= M;/My= e’z2/2/n (13)
variance v := My/My—m?=1+2m —m? (14)

2 General case

We now have a n-dim Gaussian f(y) and heavyside func-
tion 6(y) along a hyperplane with normal ¢ and offset d,

fy) x exp{*%(y —a)' A (y —a)} (15)
0(y) = [lc"y — d > 0]] (16)
where [[-]] is the indicator function. We transform this

problem such that the Gaussian becomes a standard
Gaussian and the constraint is aligned with the z-axis.
We need two transformations for this: first a linear trans-
form to standardize the Gaussian, then a rotation to align
with the z-axis. Let A = MM be the Cholesky decom-
position (A = MM ~") and we define x = M~ "(y — a).
We have

() = exp{~ 527z} (7)
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Algorithm 1 Truncated Standard Gaussian

1: Input: z

: Output: norm n, mean m, variance v
c = /7/2[1 — erf(21/2))]

: m = exp(—2%/2)/n
v=1+z2m—m?
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Algorithm 2 Truncate Gaussian

1: Input: mean a, covariance A, constraint coeffs ¢, d
: Output: mean b, covariance B

M*M = A // Cholesky decomposition
s z=(cla+d)/|Mc|
:v=Mc/|Mc|

R = rotation onto v // as in equation (??)
(m,v) = Truncated Standard Gaussian(z)

b= M"R(m,0,..,0) +a

: B = M'Rdiag(v,1,..,1)R"M

O(z) = [["(M'z+a—d)>0]] = [z +2>0],
(18)

vi=Mc/|Mc|, z:=][c"(a—d)]/|Mc| (19)
Note that we defined v to be normalized. (If |M¢| is zero
the truncation has no effect or zero likelihood, depending
on whether c'a — d > 0 or c'a — d < 0, respectively.) We
compute a rotation matrix that rotates the unit vector e =
(1,0,..,0) onto v (implemented in array.cpp). We define

2’ = R'xz. We have v = Re and

f(@') = exp{—sa""2'} (20)
0(z'") = [[v'Rz’ + z > (]|
=[[(R')2' +2>0]=[zy +2z>0]] (1)

That is, 6(z2') truncates along the first axis in the z’ coor-
dinate system. Given the mean m and variance v of the
(—z)-truncated standard Gaussian, we have

f(@") 0(z") =~ N(2'|v/, B) (22)
b = (m,0,..,0) (23)
B’ = diag(v, 1,..,1) (24)

We undo the transformation 2’ = R'M~"(y — a) and get
the result

f(y) 6(y) = N(y[b, B) (25)
b=M'RbV +a (26)
B=M"RB'R'™M (27)

which gives the mean and covariance of the truncated
Gaussian. The explicit algorithms are given below. The
figure illustrates the result of truncating a Gaussian in 2D
with the constraint [[z > 1]].
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Figure 1: Truncation of a Gaussian at the constraint [[x >
1]] in 2D.



