Machine Learning Part 2: The Breadth of ML ideas

Marc Toussaint

Machine Learning & Robotics Lab, U Stuttgart

03/06/2013

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Table of contents

The Breadth of ML ideas

A. Ideas about features & data preprocessing

- centering & whitening
- PCA
- PLS (for classification?)

B. Ideas about local learners

- local & lazy learning
- kNN
- kd-trees

C. Ideas about combining weak or randomized learners

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

- Bootstrap, bagging, and model averaging
- Boosting
- (Boosted) decision trees & stumps
- Random forests

D. Ideas about other loss functions

- hinge loss, linear programming, SVMs
- E. Ideas about deep learners

D. Ideas about other loss functions

- hinge loss, linear programming, SVMs

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Support Vector Machine

(see Hastie 12.3.2)

- binary linear classifier: $y \in \{-1, +1\}$
- SVM builds a hyperplane to separate two classes.
 A hyperplane is defined by means of β as
 {x||f(x) = φ(x)^Tβ + β₀ = 0}. The separating hyperplane is
 linear in the feature space φ(x), but non-linear in the input
 space x.
- classification: x → sign(φ(x)^Tβ + β₀) (linear discriminative function like ridge regression)
- (Warning: offset β₀ requires special attention in kernel methods, but we ignore this issue in the following.)

Support Vector Machine

Х

why maximize the margin? (fat margin vs. thin margin)

(日)、

- why maximize the margin? (fat margin vs. thin margin)
- compute the margin? (x_k is the nearest point to the plane)

$$M = \frac{y_k(\phi(x_k)^\top \beta + \beta_0)}{\|\beta\|}$$

- why maximize the margin? (fat margin vs. thin margin)
- compute the margin? (x_k is the nearest point to the plane)

$$M = \frac{y_k(\phi(x_k)^\top \beta + \beta_0)}{\|\beta\|}$$

maximize the margin?

$$\max_{\beta,\beta_0} \min_{x_k} \frac{y_k(\phi(x_k)^\top \beta + \beta_0)}{\|\beta\|}$$

ъ

• normalize β : $|\phi(x_k)^\top \beta + \beta_0| = 1$

can be rephrased as

$$\begin{split} \min_{\beta} \|\beta\| & \text{subject to } y_i(\phi(x_i)^\top \beta + \beta_0) \geq 1, \quad i = 1, \dots, n \\ \textit{Ridge regularization like ridge regression, but different loss} \end{split}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

SVM as a Penalization Method

• Difference to ridge regression: Hinge loss

SVM as a Penalization Method

- Difference to ridge regression: Hinge loss
- SVM uses the *hinge loss* instead of neg-log-likelihood:

$$L^{\text{hinge}(\beta)} = \sum_{i=1}^{n} [1 - y_i \phi(x_i)^\top \beta - \beta_0]_+ + \lambda \|\beta\|^2$$

subscript + indicates the positive part $% \left({{{\left[{{{{\bf{n}}_{{\rm{s}}}}} \right]}_{{\rm{sc}}}}} \right)$

SVM as a Penalization Method

- Difference to ridge regression: Hinge loss
- SVM uses the *hinge loss* instead of neg-log-likelihood:

$$L^{\text{hinge}(\beta)} = \sum_{i=1}^{n} [1 - y_i \phi(x_i)^{\top} \beta - \beta_0]_+ + \lambda \|\beta\|^2$$

subscript + indicates the positive part

▶ Hinge loss is zero if $f(x_i) = \phi(x_i)^\top \beta + \beta_0 \ge 1$ if $y_i = 1$ and $f(x_i) = \phi(x_i)^\top \beta + \beta_0 \le -1$ if $y_i = -1$.

The Lagrange (primal) function, to be minimized w.r.t. β and β_0 is

$$L(\beta, \beta_0) = \frac{1}{2} \|\beta\|^2 - \sum_{i=1}^{N} \alpha_i [y_i (\phi(x_i)^\top \beta + \beta_0) - 1]$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

where $\alpha_i \geq 0$

The Lagrange (primal) function, to be minimized w.r.t. β and β_0 is

$$L(\beta, \beta_0) = \frac{1}{2} \|\beta\|^2 - \sum_{i=1}^{N} \alpha_i [y_i (\phi(x_i)^\top \beta + \beta_0) - 1]$$

where $\alpha_i \ge 0$ Setting the derivatives to zero, we obtain:

$$\beta = \sum_{i=1}^{N} \alpha_i y_i \phi(x_i)$$
$$0 = \sum_{i=1}^{N} \alpha_i y_i$$

Substituing β and $\beta_0,$ obtain a simpler convex optimization problem (dual)

$$L(\alpha) = \sum_{i=1}^{N} \alpha_i - \sum_{i=1}^{N} \sum_{k=1}^{N} \alpha_i \alpha_k y_i y_k \phi(x_i)^\top \phi(x_k)$$

such that $\alpha_i \ge 0$, and $0 = \sum_{i=1}^{N} \alpha_i y_i$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Using the Lagrangian dual form, the solution for f(x) can be written as

$$f(x) = \phi(x)^{\top}\beta + \beta_0$$

= $\sum_{i=1}^{n} \alpha_i y_i \phi(x)^{\top} \phi(x_i)$
= $\sum_{i=1}^{n} \alpha_i y_i k(x, x_i) + \beta_0$

one α_i for each training point $(x_i, y_i) \rightarrow \alpha_i, x_i, y_i$ define β implicitly

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Using the Lagrangian dual form, the solution for f(x) can be written as

$$f(x) = \phi(x)^{\top}\beta + \beta_0$$

= $\sum_{i=1}^{n} \alpha_i y_i \phi(x)^{\top} \phi(x_i)$
= $\sum_{i=1}^{n} \alpha_i y_i k(x, x_i) + \beta_0$

one α_i for each training point $(x_i, y_i) \rightarrow \alpha_i, x_i, y_i$ define β implicitly

The Hinge loss introduces *sparsity*: Most α_i will be zero. Non-zero α_i only for those training points *i* for which the constraint y_i(φ(x_i)^Tβ + β₀) ≥ 1 is exactly met: α_i ≠ 0 → y_i(φ(x_i)^Tβ + β₀) = 1

► Using the Lagrangian *dual form*, the solution for f(x) can be written as

$$f(x) = \phi(x)^{\top}\beta + \beta_0$$

= $\sum_{i=1}^{n} \alpha_i y_i \phi(x)^{\top} \phi(x_i)$
= $\sum_{i=1}^{n} \alpha_i y_i k(x, x_i) + \beta_0$

one α_i for each training point $(x_i, y_i) \rightarrow \alpha_i, x_i, y_i$ define β implicitly

- The Hinge loss introduces *sparsity*: Most α_i will be zero. Non-zero α_i only for those training points *i* for which the constraint y_i(φ(x_i)^Tβ + β₀) ≥ 1 is exactly met: α_i ≠ 0 → y_i(φ(x_i)^Tβ + β₀) = 1
- Efficient optimization techniques (quadratic programming with column generation) exploit this.

 Non-zero α_i define the hyperplane / the decision function f. The corresponding x_i are called *support vectors*.

 SVM exploits the kernel trick to achieve non-linear classification by reasoning implicitly in non-linear feature space (as in ridge regression).

Allow classes to overlap in feature space using slack variables

Hinge loss

$$L^{\text{hinge}(\beta)} = \sum_{i=1}^{n} [1 - y_i \phi(x_i)^{\top} \beta - \beta_0 - \xi_i]_+ + \sum_{i=1}^{n} \xi_i + \lambda \|\beta\|^2$$

Optimization problem:

$$\begin{split} \min_{\beta} \frac{1}{2} \|\beta\|^2 + C \sum_{i=1}^n \xi_i \\ \text{subject to: } y_i(\phi(x_i)^\top \beta + \beta_0) \geq 1 - \xi_i, \quad i = 1, \dots, n, \\ \text{and } \xi_i \geq 0 \end{split}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

The Lagrange (primal) function is

$$L = \frac{1}{2} \|\beta\|^2 + C \sum_{i=1}^n \xi_i - \sum_{i=1}^N \mu_i \xi_i - \sum_{i=1}^N \alpha_i [y_i (\phi(x_i)^\top \beta + \beta_0) - (1 - \xi_i)]$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

The Lagrange (primal) function is

$$L = \frac{1}{2} \|\beta\|^2 + C \sum_{i=1}^n \xi_i - \sum_{i=1}^N \mu_i \xi_i - \sum_{i=1}^N \alpha_i [y_i (\phi(x_i)^\top \beta + \beta_0) - (1 - \xi_i)]$$

Derivatives with respect to β , β_0 , ξ_i

$$\beta = \sum_{i=1}^{N} \alpha_i y_i \phi(x_i)$$
$$0 = \sum_{i=1}^{N} \alpha_i y_i$$
$$\alpha_i = C - \mu_i, \forall i$$

- 日本 - 1 日本 - 日本 - 日本

In the left panel 62% of the observations are support points, while in the right panel 85% are.

C = 10000

C = 0.01

イロト イポト イヨト イヨト

(from Hastie 12.2)