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The Breadth of ML ideas

I A. Ideas about features & data preprocessing
– centering & whitening
– PCA
– PLS (for classification?)

I B. Ideas about local learners
– local & lazy learning
– kNN
– kd-trees

I C. Ideas about combining weak or randomized learners
– Bootstrap, bagging, and model averaging
– Boosting
– (Boosted) decision trees & stumps
– Random forests

I D. Ideas about other loss functions
– hinge loss, linear programming, SVMs

I E. Ideas about deep learners



D. Ideas about other loss functions

– hinge loss, linear programming, SVMs



Support Vector Machine

(see Hastie 12.3.2)

I binary linear classifier: y ∈ {−1,+1}
I SVM builds a hyperplane to separate two classes.

A hyperplane is defined by means of β as
{x‖f (x) = φ(x)>β + β0 = 0} . The separating hyperplane is
linear in the feature space φ(x), but non-linear in the input
space x .

I classification: x 7→ sign(φ(x)>β + β0)
(linear discriminative function like ridge regression)

I (Warning: offset β0 requires special attention in kernel
methods, but we ignore this issue in the following.)
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I why maximize the margin? (fat margin vs. thin margin)
I compute the margin? (xk is the nearest point to the plane)

M =
yk(φ(xk)>β + β0)

‖β‖

I maximize the margin?

max
β,β0

min
xk

yk(φ(xk)>β + β0)
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Support Vector Machine (Case 1: linearly separable)

I normalize β: |φ(xk)>β + β0| = 1
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I can be rephrased as

minβ ||β|| subject to yi (φ(xi )
>β + β0) ≥ 1, i = 1, . . . , n

Ridge regularization like ridge regression, but different loss
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Support Vector Machine (Case 1: linearly separable)
SVM as a Penalization Method

I Difference to ridge regression: Hinge loss

I SVM uses the hinge loss instead of neg-log-likelihood:

Lhinge(β) =
∑n

i=1[1− yiφ(xi )
>β − β0]+ + λ‖β‖2

subscript + indicates the positive part
I Hinge loss is zero if f (xi ) = φ(xi )

>β + β0 ≥ 1 if yi = 1 and
f (xi ) = φ(xi )

>β + β0 ≤ −1 if yi = −1.
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Support Vector Machine (Case 1: linearly separable)

The Lagrange (primal) function, to be minimized w.r.t. β and β0 is

L(β, β0) =
1

2
‖β‖2 −

N∑
i=1

αi [yi (φ(xi )
>β + β0)− 1]

where αi ≥ 0

Setting the derivatives to zero, we obtain:

β =
N∑
i=1

αiyiφ(xi )

0 =
N∑
i=1

αiyi
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Support Vector Machine (Case 1: linearly separable)

Substituing β and β0, obtain a simpler convex optimization
problem (dual)

L(α) =
N∑
i=1

αi −
N∑
i=1

N∑
k=1

αiαkyiykφ(xi )
>φ(xk)

such that αi ≥ 0, and 0 =
N∑
i=1

αiyi



Support Vector Machine (Case 1: linearly separable)
I Using the Lagrangian dual form, the solution for f (x) can be

written as

f (x) = φ(x)>β + β0

=
n∑

i=1

αiyiφ(x)>φ(xi )

=
n∑

i=1

αiyik(x , xi ) + β0

one αi for each training point (xi , yi ) → αi , xi , yi define β
implicitly

I The Hinge loss introduces sparsity: Most αi will be zero.
Non-zero αi only for those training points i for which the
constraint yi (φ(xi )

>β + β0) ≥ 1 is exactly met:
αi 6= 0→ yi (φ(xi )

>β + β0) = 1
I Efficient optimization techniques (quadratic programming

with column generation) exploit this.
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Support Vector Machine (Case 1: linearly separable)

I Non-zero αi define the hyperplane / the decision function f .
The corresponding xi are called support vectors.

I SVM exploits the kernel trick to achieve non-linear
classification by reasoning implicitly in non-linear feature
space (as in ridge regression).



Support Vector Machine (Case 2: non-linearly separable)
Allow classes to overlap in feature space using slack variables

I Hinge loss

Lhinge(β) =
∑n

i=1[1− yiφ(xi )
>β − β0 − ξi ]+ +

∑n
i=1 ξi + λ‖β‖2



Support Vector Machine (Case 2: non-linearly separable)

Optimization problem:

min
β

1

2
||β||2 + C

n∑
i=1

ξi

subject to: yi (φ(xi )
>β + β0) ≥ 1− ξi , i = 1, . . . , n,

and ξi ≥ 0



Support Vector Machine (Case 2: non-linearly separable)

The Lagrange (primal) function is

L =
1

2
||β||2 + C

n∑
i=1

ξi −
N∑
i=1

µiξi −
N∑
i=1

αi [yi (φ(xi )
>β + β0)− (1− ξi )]

Derivatives with respect to β, β0, ξi

β =
N∑
i=1

αiyiφ(xi )

0 =
N∑
i=1

αiyi

αi = C − µi ,∀i



Support Vector Machine (Case 2: non-linearly separable)

The Lagrange (primal) function is

L =
1

2
||β||2 + C

n∑
i=1

ξi −
N∑
i=1

µiξi −
N∑
i=1

αi [yi (φ(xi )
>β + β0)− (1− ξi )]

Derivatives with respect to β, β0, ξi

β =
N∑
i=1

αiyiφ(xi )

0 =
N∑
i=1

αiyi

αi = C − µi ,∀i



Support Vector Machine (Case 2: non-linearly separable)

In the left panel 62% of the observations are support points, while
in the right panel 85% are.

(from Hastie 12.2)


