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D. ldeas about other loss functions

— hinge loss, linear programming, SVMs



Support Vector Machine

(see Hastie 12.3.2)

» binary linear classifier: y € {—1,+1}

» SVM builds a hyperplane to separate two classes.
A hyperplane is defined by means of 3 as
{x|1f(x) = ¢(x) "B+ Bo = 0} . The separating hyperplane is
linear in the feature space ¢(x), but non-linear in the input
space x.

» classification: x + sign(é(x) "3 + Bo)
(linear discriminative function like ridge regression)

» (Warning: offset fy requires special attention in kernel
methods, but we ignore this issue in the following.)
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» why maximize the margin? (fat margin vs. thin margin)
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Support Vector Machine
AY B

» why maximize the margin? (fat margin vs. thin margin)
» compute the margin? (xx is the nearest point to the plane)

M — ye(o(xk) "B+ Bo)
18l

> maximize the margin?

max min yi(d(xk) "B+ Bo)
B.Bo X 18]




Support Vector Machine (Case 1: linearly separable)

» normalize B: [¢(xk) "B+ Bo| =1
T3+ 8,=0




Support Vector Machine (Case 1: linearly separable)

» normalize B: [¢(xk) "B+ Bo| =1
2T B+ 6o =0

» can be rephrased as

ming | subject to yi(#(x;) "B+ Bo) >1, i=1,....n
Ridge regularization like ridge regression, but different loss



Support Vector Machine (Case 1: linearly separable)
SVM as a Penalization Method
» Difference to ridge regression: Hinge loss
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SVM as a Penalization Method
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» SVM uses the hinge loss instead of neg-log-likelihood:
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Support Vector Machine (Case 1: linearly separable)
SVM as a Penalization Method
» Difference to ridge regression: Hinge loss
» SVM uses the hinge loss instead of neg-log-likelihood:

Lhinee(F) — 570 [1 — yid(xi) "B — Bol+ + AlIBII?
subscript + indicates the positive part

» Hinge loss is zero if f(x;) = ¢(x;) "B+ B0 > 1if y;=1and
f(xi) = o) B+ o < —1if y; = —1.
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Support Vector Machine (Case 1: linearly separable)

The Lagrange (primal) function, to be minimized w.r.t. 5 and fy is

L(B, Bo) = ”BHZ Za/[}/: /3 + Bo) — 1]

where a; > 0



Support Vector Machine (Case 1: linearly separable)

The Lagrange (primal) function, to be minimized w.r.t. 5 and fy is

L(B, Bo) = HBHZ ZO‘I[}/I /3+50)_1]

where a; > 0
Setting the derivatives to zero, we obtain:

N
B="" aiyid(x)
i=1

N
0="> aiy
i=1



Support Vector Machine (Case 1: linearly separable)

Substituing 8 and Sy, obtain a simpler convex optimization
problem (dual)

N N

N
L(a) = Z aj — Z Z ajakyiykd(xi) " (k)
i=1

i=1 k=1

N
such that a; > 0, and 0 = Za,-y,-
i=1




Support Vector Machine (Case 1: linearly separable)

» Using the Lagrangian dual form, the solution for f(x) can be
written as

F(x) = ¢(x)" B+ fo
= aiyid(x) " é(x)
i—1

= aiyik(x, %) + fo

i=1
one «; for each training point (x;,y;) — «;, X;, y;i define 8
implicitly
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implicitly

» The Hinge loss introduces sparsity: Most «; will be zero.

Non-zero «; only for those training points / for which the
constraint y;(é(x;) T B+ Bo) > 1 is exactly met:
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Support Vector Machine (Case 1: linearly separable)

» Using the Lagrangian dual form, the solution for f(x) can be
written as

F(x) = ¢(x)" B+ fo
= aiyid(x) " é(x)
i—1

n
= aiyik(x, %) + fo
i=1
one «; for each training point (x;,y;) — «;, X;, y;i define 8
implicitly
» The Hinge loss introduces sparsity: Most «; will be zero.
Non-zero «; only for those training points / for which the
constraint y;(é(x;) T B+ Bo) > 1 is exactly met:
a;i # 0 = yi(d(xi) " B+ fo) =1
» Efficient optimization techniques (quadratic programming
with column generation) exploit this.



Support Vector Machine (Case 1: linearly separable)

» Non-zero «; define the hyperplane / the decision function f.
The corresponding x; are called support vectors.

Xy

Support Vectors

Margin
Width

» SVM exploits the kernel trick to achieve non-linear
classification by reasoning implicitly in non-linear feature
space (as in ridge regression).



Support Vector Machine (Case 2: non-linearly separable)
Allow classes to overlap in feature space using slack variables
> Hinge loss

Lhinge(8) — ™1 11— yid(x) T8 — Bo — &l + o0, & + A|IB]12

X1

X2

Ww-X+b=0



Support Vector Machine (Case 2: non-linearly separable)

Optimization problem:

1 u
min §HB||2 +CY ¢
=1

subject to: yi(¢(x;) B+ Bo) >1—¢&, i=1,...,n,
and £ >0




Support Vector Machine (Case 2: non-linearly separable)

The Lagrange (primal) function is

n N N
L= %Hﬂ”z +CY &= ki — Y ailyi(¢(x) "B+ Bo) — (1 —&)]

i=1 i=1 i=1




Support Vector Machine (Case 2: non-linearly separable)

The Lagrange (primal) function is

n N N
L= %Hﬂ”z +CY &= ki — Y ailyi(¢(x) "B+ Bo) — (1 —&)]

i=1 i=1 i=1

Derivatives with respect to 3, Bo, &;
N
B=7) aiyio(x)
i=1

N
0="> aiy
i=1

aj = C—pj, Vi



Support Vector Machine (Case 2: non-linearly separable)

In the left panel 62% of the observations are support points, while
in the right panel 85% are.

Training Error: 0.270
TestError: 0288
Bayes Error: 0.210

Training Error: 0.26 -~
Test Error: 0.30
Bayes Emor: 0.21

C' = 10000 C =001

(from Hastie 12.2)



