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Global Optimization

• Is there an optimal way to optimize (in the Blackbox case)?

• Is there a way to find the global optimum instead of only local?
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Outline

• Play a game

• Multi-armed bandits
– Belief state & belief planning
– Upper Confidence Bound (UCB)

• Optimization as infinite bandits
– GPs as belief state

• Standard heuristics:
– Upper Confidence Bound (GP-UCB)
– Maximal Probability of Improvement (MPI)
– Expected Improvement (EI)

3/32



Bandits
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Bandits

• There are n machines.

• Each machine i returns a reward y ∼ P (y; θi)
The machine’s parameter θi is unknown
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Bandits

• Let at ∈ {1, .., n} be the choice of machine at time t
Let yt ∈ R be the outcome with mean 〈yat〉

• A policy or strategy maps all the history to a new choice:

π : [(a1, y1), (a2, y2), ..., (at-1, yt-1)] 7→ at

• Problem: Find a policy π that

max
〈∑T

t=1 yt

〉
or

max 〈yT 〉

or other objectives like discounted infinite horizon max
〈∑∞

t=1 γ
tyt
〉
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Exploration, Exploitation

• “Two effects” of choosing a machine:
– You collect more data about the machine→ knowledge
– You collect reward

• For example
– Exploration: Choose the next action at to min 〈H(bt)〉
– Exploitation: Choose the next action at to max 〈yt〉
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The Belief State

• “Knowledge” can be represented in two ways:
– as the full history

ht = [(a1, y1), (a2, y2), ..., (at-1, yt-1)]

– as the belief
bt(θ) = P (θ|ht)

where θ are the unknown parameters θ = (θ1, .., θn) of all machines

• In the bandit case:
– The belief factorizes bt(θ) = P (θ|ht) =

∏
i bt(θi|ht)

e.g. for Gaussian bandits with constant noise, θi = µi

bt(µi|ht) = N(µi|ŷi, ŝi)

e.g. for binary bandits, θi = pi, with prior Beta(pi|α, β):

bt(pi|ht) = Beta(pi|α+ ai,t, β + bi,t)

ai,t =
∑t−1
s=1[as= i][ys=0] , bi,t =

∑t−1
s=1[as= i][ys=1]

8/32



The Belief MDP
• The process can be modelled as

a1 a2 a3y1 y2 y3

θ θ θ θ

or as Belief MDP
a1 a2 a3y1 y2 y3

b0 b1 b2 b3

P (b′|y, a, b) =

1 if b′ = b′[b,a,y]

0 otherwise
, P (y|a, b) =

∫
θa
b(θa) P (y|θa)

• The Belief MDP describes a different process: the interaction between the
information available to the agent (bt or ht) and its actions, where the agent
uses his current belief to anticipate outcomes, P (y|a, b).

• The belief (or history ht) is all the information the agent has avaiable; P (y|a, b)
the “best” possible anticipation of observations. If it acts optimally in the Belief
MDP, it acts optimally in the original problem.

Optimality in the Belief MDP ⇒ optimality in the original problem 9/32



Optimal policies via Belief Planning

• The Belief MDP:
a1 a2 a3y1 y2 y3

b0 b1 b2 b3

P (b′|y, a, b) =

1 if b′ = b′[b,a,y]

0 otherwise
, P (y|a, b) =

∫
θa
b(θa) P (y|θa)

• Belief Planning: Dynamic Programming on the value function

∀b : Vt-1(b) = max
π

〈∑T
t=t yt

〉
= max

π

[
〈yt〉+

〈∑T
t=t+1 yt

〉 ]
= max

at

∫
yt
P (yt|at, b)

[
yt + Vt(b

′
[b,at,yt]

)
]
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Optimal policies

• The value function assigns a value (maximal achievable return) to a
state of knowledge

• The optimal policy is greedy w.r.t. the value function (in the sense of
the maxat above)

• Computationally heavy: bt is a probability distribution, Vt a function
over probability distributions

• The term
∫
yt
P (yt|at, bt-1)

[
yt + Vt(bt-1[at, yt])

]
is related to the Gittins Index: it can be

computed for each bandit separately.
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Example exercise

• Consider 3 binary bandits for T = 10.
– The belief is 3 Beta distributions Beta(pi|α+ ai, β + bi) → 6 integers
– T = 10 → each integer ≤ 10

– Vt(bt) is a function over {0, .., 10}6

• Given a prior α = β = 1,
a) compute the optimal value function and policy for the final reward
and the average reward problems,
b) compare with the UCB policy.
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Greedy heuristic: Upper Confidence Bound (UCB)

1: Initializaiton: Play each machine once
2: repeat
3: Play the machine i that maximizes ŷi + β

√
2 lnn
ni

4: until

ŷi is the average reward of machine i so far
ni is how often machine i has been played so far
n =

∑
i ni is the number of rounds so far

β is often chosen as β = 1

See Finite-time analysis of the multiarmed bandit problem, Auer, Cesa-Bianchi & Fischer,
Machine learning, 2002.
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UCB algorithms

• UCB algorithms determine a confidence interval such that

ŷi − σi < 〈yi〉 < ŷi + σi

with high probability.
UCB chooses the upper bound of this confidence interval

• Optimism in the face of uncertainty

• Strong bounds on the regret (sub-optimality) of UCB (e.g. Auer et al.)
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Conclusions

• The bandit problem is an archetype for
– Sequential decision making
– Decisions that influence knowledge as well as rewards/states
– Exploration/exploitation

• The same aspects are inherent also in global optimization, active
learning & RL

• Belief Planning in principle gives the optimal solution

• Greedy Heuristics (UCB) are computationally much more efficient and
guarantee bounded regret
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Further reading

• ICML 2011 Tutorial Introduction to Bandits: Algorithms and Theory,
Jean-Yves Audibert, Rémi Munos

• Finite-time analysis of the multiarmed bandit problem, Auer,
Cesa-Bianchi & Fischer, Machine learning, 2002.

• On the Gittins Index for Multiarmed Bandits, Richard Weber, Annals of
Applied Probability, 1992.
Optimal Value function is submodular.
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Global Optimization
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Global Optimization

• Let x ∈ Rn, f : Rn → R, find

min
x

f(x)

(I neglect constraints g(x) ≤ 0 and h(x) = 0 here – but could be included.)

• Blackbox optimization: find optimium by sampling values yt = f(xt)

No access to ∇f or ∇2f

Observations may be noisy y ∼ N(y | f(xt), σ)
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Global Optimization = infinite bandits

• In global optimization f(x) defines a reward for every x ∈ Rn

– Instead of a finite number of actions at we now have xt

• Optimal Optimization could be defined as: find π : ht 7→ xt that

min
〈∑T

t=1 f(xt)
〉

or
min 〈f(xT )〉
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Gaussian Processes as belief

• The unknown “world property” is the function θ = f

• Given a Gaussian Process prior GP (f |µ,C) over f and a history

Dt = [(x1, y1), (x2, y2), ..., (xt-1, yt-1)]

the belief is

bt(f) = P (f |Dt) = GP(f |Dt, µ, C)

Mean(f(x)) = f̂(x) = κ(x)(K + σ2I)-1y response surface

Var(f(x)) = σ̂(x) = k(x, x)− κ(x)(K + σ2In)
-1κ(x) confidence interval

• Side notes:
– Don’t forget that Var(y∗|x∗, D) = σ2 + Var(f(x∗)|D)

– We can also handle discrete-valued functions f using GP classification
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Optimal optimization via belief planning

• As for bandits it holds

Vt-1(bt-1) = max
π

〈∑T
t=t yt

〉
= max

xt

∫
yt
P (yt|xt, bt-1)

[
yt + Vt(bt-1[xt, yt])

]
Vt-1(bt-1) is a function over the GP-belief!
If we could compute Vt-1(bt-1) we “optimally optimize”

• I don’t know of a minimalistic case where this might be feasible
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Conclusions

• Optimization as a problem of
– Computation of the belief
– Belief planning

• Crucial in all of this: the prior P (f)
– GP prior: smoothness; but also limited: only local correlations!

No “discovery” of non-local/structural correlations through the space
– The latter would require different priors, e.g. over different function classes
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Heuristics

24/32



1-step heuristics based on GPs

• Maximize Probability of Improvement (MPI)

from Jones (2001)

xt = argmax
x

∫ y∗
−∞N(y|f̂(x), σ̂(x))

• Maximize Expected Improvement (EI)

xt = argmax
x

∫ y∗
−∞N(y|f̂(x), σ̂(x)) (y∗ − y)

• Maximize UCB
xt = argmax

x
f̂(x) + βtσ̂(x)

(Often, βt = 1 is chosen. UCB theory allows for better choices. See Srinivas et al.
citation below.) 25/32



Each step requires solving an optimization
problem

• Note: each argmax on the previous slide is an optimization problem

• As f̂ , σ̂ are given analytically, we have gradients and Hessians. BUT:
multi-modal problem.

• In practice:
– Many restarts of gradient/2nd-order optimization runs
– Restarts from a grid; from many random points

• We put a lot of effort into carefully selecting just the next query point

26/32



From: Information-theoretic regret bounds for gaussian process optimization in the bandit
setting Srinivas, Krause, Kakade & Seeger, Information Theory, 2012.
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Pitfall of this approach

• A real issue, in my view, is the choice of kernel (i.e. prior P (f))
– ’small’ kernel: almost exhaustive search
– ’wide’ kernel: miss local optima
– adapting/choosing kernel online (with CV): might fail
– real f might be non-stationary
– non RBF kernels? Too strong prior, strange extrapolation

• Assuming that we have the right prior P (f) is really a strong
assumption
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Further reading

• Classically, such methods are known as Kriging

• Information-theoretic regret bounds for gaussian process optimization
in the bandit setting Srinivas, Krause, Kakade & Seeger, Information
Theory, 2012.

• Efficient global optimization of expensive black-box functions. Jones,
Schonlau, & Welch, Journal of Global Optimization, 1998.

• A taxonomy of global optimization methods based on response
surfaces Jones, Journal of Global Optimization, 2001.

• Explicit local models: Towards optimal optimization algorithms, Poland,
Technical Report No. IDSIA-09-04, 2004.
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Entropy Search
slides by Philipp Hennig

P. Hennig & C. Schuler: Entropy Search for Information-Efficient Global
Optimization, JMLR 13 (2012).
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Predictive Entropy Search

• Hernández-Lobato, Hoffman & Ghahraman: Predictive Entropy Search
for Efficient Global Optimization of Black-box Functions, NIPS 2014.

• Also for constraints!

• Code: https://github.com/HIPS/Spearmint/
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