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Global Optimization

¢ Is there an optimal way to optimize (in the Blackbox case)?
e Is there a way to find the global optimum instead of only local?
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Outline

e Play a game

e Multi-armed bandits
— Belief state & belief planning
— Upper Confidence Bound (UCB)

e Optimization as infinite bandits
— GPs as belief state

e Standard heuristics:
— Upper Confidence Bound (GP-UCB)
— Maximal Probability of Improvement (MPI)
— Expected Improvement (El)
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Bandits
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Bandits

e There are n machines.

e Each machine i returns a reward y ~ P(y; 0;)
The machine’s parameter 6, is unknown
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Bandits

e Leta, € {1,..,n} be the choice of machine at time ¢
Let y; € R be the outcome with mean (y,,)

e A policy or strategy maps all the history to a new choice:

T [(ahyl)v (a23 y2)7 ceey (at—lvyt—l)] = ag

e Problem: Find a policy = that

T
max <Zt:1 yt>
or

max (yr)

or other objectives like discounted infinite horizon max (3%, v'y¢)
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Exploration, Exploitation

e “Two effects” of choosing a machine:
— You collect more data about the machine — knowledge
— You collect reward

e For example
— Exploration: Choose the next action a; to min (H(b;))
— Exploitation: Choose the next action a; to max (y:)
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The Belief State

e “Knowledge” can be represented in two ways:
— as the full history

he = [(a1,91), (a2, 92), vy (G-, Y1)

— as the belief
b:(0) = P(0]h:)

where 0 are the unknown parameters 6 = (64, .., 0,,) of all machines

e In the bandit case:

— The belief factorizes b.(0) = P(0|h:) = [, be(0:|he)
e.g. for Gaussian bandits with constant noise, 6; = u;

be(pilhe) = N(il9i, 8i)
e.g. for binary bandits, 6; = p;, with prior Beta(p;|a, 8):

be(pilhe) = Beta(pi|a + @i, B+ bit)
aip =Y ilas=illys=0], by =>4 [as=illys =



The Belief MDP

e The process can be modelled as

S0 G S

=/ —/

or as Belief MDP

Loty =0,
vl P(yla,b) = [, b(6a) P(y]0a)
0 otherwise

P |y,a,b) = {

e The Belief MDP describes a different process: the interaction between the
information available to the agent (b; or h:) and its actions, where the agent
uses his current belief to anticipate outcomes, P(y|a,b).

e The belief (or history h.) is all the information the agent has avaiable; P(y|a,b)
the “best” possible anticipation of observations. If it acts optimally in the Belief
MDP, it acts optimally in the original problem.

Optimality in the Belief MDP = optimality in the original problem ¢35



Optimal policies via Belief Planning

e The Belief MDP: O O OO
bu H H )%’3

1oty =0,
.[ba Y] , _F)(y|a7 b) = fea b(oa) P(y|9a)
0 otherwise

Py, a,b) = {

¢ Belief Planning: Dynamic Programming on the value function

Yy 0 Via(b) = max <ZtT:t yt>
= max {(yt> + <Z?:t+1 yt”

= max [, P(yelar,b) [0+ Vi, )]
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Optimal policies
e The value function assigns a value (maximal achievable return) to a

state of knowledge

e The optimal policy is greedy w.r.t. the value function (in the sense of
the max,, above)

e Computationally heavy: b, is a probability distribution, V; a function
over probability distributions

e Theterm fyt P(yt|at, be1) [yt + Vi(be1 [at,yt})] is related to the Gittins Index: it can be
computed for each bandit separately.
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Example exercise

e Consider 3 binary bandits for 7" = 10.
— The belief is 3 Beta distributions Beta(p;|a + a;, 8 + b;) — 6 integers
- T=10 — eachinteger <10
— Vi(b:) is a function over {0, .., 10}°

e Given a priora= =1,
a) compute the optimal value function and policy for the final reward
and the average reward problems,
b) compare with the UCB policy.
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Greedy heuristic: Upper Confidence Bound (UCB)

. Initializaiton: Play each machine once
repeat

Play the machine i that maximizes §; + 8,/ 222
until

Eol I

7, is the average reward of machine i so far

n; is how often machine i has been played so far
n =, n; is the number of rounds so far

[ is often chosenas 5 =1

See Finite-time analysis of the multiarmed bandit problem, Auer, Cesa-Bianchi & Fischer,
Machine learning, 2002.
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UCB algorithms
e UCB algorithms determine a confidence interval such that

Ui — 0 < yi) < Pi +0;

with high probability.
UCB chooses the upper bound of this confidence interval

e Optimism in the face of uncertainty

e Strong bounds on the regret (sub-optimality) of UCB (e.g. Auer et al.)
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Conclusions

e The bandit problem is an archetype for
— Sequential decision making
— Decisions that influence knowledge as well as rewards/states
— Exploration/exploitation

e The same aspects are inherent also in global optimization, active
learning & RL

e Belief Planning in principle gives the optimal solution

e Greedy Heuristics (UCB) are computationally much more efficient and
guarantee bounded regret
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Further reading

e ICML 2011 Tutorial Introduction to Bandits: Algorithms and Theory,
Jean-Yves Audibert, Rémi Munos

e Finite-time analysis of the multiarmed bandit problem, Auer,
Cesa-Bianchi & Fischer, Machine learning, 2002.

e On the Gittins Index for Multiarmed Bandits, Richard Weber, Annals of
Applied Probability, 1992.
Optimal Value function is submodular.
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Global Optimization
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Global Optimization
e Letz eR™, f: R*" —» R, find
min_ f(z)
(I neglect constraints g(z) < 0 and h(z) = 0 here — but could be included.)

e Blackbox optimization: find optimium by sampling values y; = f(z:)
No access to Vf or V3f
Observations may be noisy y ~ N(y | f(z¢), o)
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Global Optimization = infinite bandits

e In global optimization f(z) defines a reward for every =z € R
— Instead of a finite number of actions a; we now have x;

¢ Optimal Optimization could be defined as: find = : h; — x; that

min (337, f(w))

or

min (f(z7))
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Gaussian Processes as belief
e The unknown “world property” is the function 6 = f
e Given a Gaussian Process prior GP(f|u,C) over f and a history
Dy = [(z1,11), (®2,y2), .., (@41, Y11)]

the belief is

be(f) = P(f | Dt) = GP(f|Dy, 11, C)
) = k(x)(K + o*T)ty response surface
) = k(z,r) — k(2)(K + 0°1,) " k(z) confidence interval

e Side notes:
— Don't forget that Var(y*|z*, D) = o + Var(f(z*)| D)
— We can also handle discrete-valued functions f using GP classification
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Optimal optimization via belief planning

e As for bandits it holds

V;S-l(bt-l) = m;xx <Z?:t yt>

= max fyt P(y|ze, be) {yt + Vi(bea [@e, ye])

Vi1 (be1) is a function over the GP-belief!
If we could compute V;_1(b;.1) we “optimally optimize”

¢ | don’t know of a minimalistic case where this might be feasible
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Conclusions

e Optimization as a problem of
— Computation of the belief
— Belief planning

e Crucial in all of this: the prior P(f)

— GP prior: smoothness; but also limited: only local correlations!
No “discovery” of non-local/structural correlations through the space

— The latter would require different priors, e.g. over different function classes
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Heuristics
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1-step heuristics based on GPs

StandardEror(x)

0 2 4 6 [] 0 12
Figure 14. Using kriging. we can estimate the probability that sampling at a given point will

“improve’ our solution, in the sense of yiclding a value that is equal or better than some target from JOneS (2001 )
T

e Maximize Probability of Improvement (MPI)
v, = argmax [V N(y|f(2),6(x))
e Maximize Expected Improvement (El)
z¢ = argmax IV Nl f (@), 6(2) (v° — y)

¢ Maximize UCB
y = argmax f(z) + B (x)

(Often, 8¢ = 1 is chosen. UCB theory allows for better choices. See Srinivas et al.
citation below.) 25/32



Each step requires solving an optimization
problem

¢ Note: each argmax on the previous slide is an optimization problem

As f,¢& are given analytically, we have gradients and Hessians. BUT:
multi-modal problem.

In practice:
— Many restarts of gradient/2nd-order optimization runs
— Restarts from a grid; from many random points

We put a lot of effort into carefully selecting just the next query point
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From: Information-theoretic regret bounds for gaussian process optimization in the bandit
setting Srinivas, Krause, Kakade & Seeger, Information Theory, 2012.
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Fig. 2. (a) Example of temperature data collected by a network of 46 sensors at Intel Research Berkeley. (b) and (¢) Two iterations of the GP-UCB algorithm.
The dark curve indicates the current posterior mean, while the gray bands represent the upper and lower confidence bounds which contain the function with high
probability. The “4- mark indicates points that have been sampled before. while the “o™ mark shows the point chosen by the GP-UCB algorithm to sample next
It samples points that are either (b) uncertain or have (¢) high pesterior mean.
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Fig. 6. Mean average regret: GP-UCB and various heuristics on (a) synthetic and (b. ¢) sensor network data.
1 5
30
208 B4 B
> % Mean only %25
o 4 J 4
£06 €3 £ 20"
g g z Mean only
£ 04 Mean only g, —uce £ 15 +
=" = Var only = El
] < c 10/ Vi I
5 e g ar only VPl
202 2, £ /  ucs )
MPI El 5 J
[0} ‘ 5 0] 0
0 10 20 30 40 50 0 10 20 30 40 0 20 40 60
Iterations Iterations Iterations.
(a) (b) (c)

Fig. 7. Mean minimum regret: GP-UCB and various heuristics on (a) synthetic, and (b. ¢) sensor network data.
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Pitfall of this approach

e Arealissue, in my view, is the choice of kernel (i.e. prior P(f))
— ’small’ kernel: almost exhaustive search

‘'wide’ kernel: miss local optima

adapting/choosing kernel online (with CV): might fail

real f might be non-stationary

non RBF kernels? Too strong prior, strange extrapolation

e Assuming that we have the right prior P(f) is really a strong
assumption
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Further reading

¢ Classically, such methods are known as Kriging

e Information-theoretic regret bounds for gaussian process optimization
in the bandit setting Srinivas, Krause, Kakade & Seeger, Information
Theory, 2012.

e Efficient global optimization of expensive black-box functions. Jones,
Schonlau, & Welch, Journal of Global Optimization, 1998.

e A taxonomy of global optimization methods based on response
surfaces Jones, Journal of Global Optimization, 2001.

e Explicit local models: Towards optimal optimization algorithms, Poland,
Technical Report No. IDSIA-09-04, 2004.
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Entropy Search

slides by Philipp Hennig
P. Hennig & C. Schuler: Entropy Search for Information-Efficient Global
Optimization, JMLR 13 (2012).
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Predictive Entropy Search

e Hernandez-Lobato, Hoffman & Ghahraman: Predictive Entropy Search
for Efficient Global Optimization of Black-box Functions, NIPS 2014.

¢ Also for constraints!

e Code: https://github.com/HIPS/Spearmint/

32/32


https://github.com/HIPS/Spearmint/

