

Introduction to Optimization

Global & Bayesian Optimization

Multi-armed bandits, exploration vs. exploitation, navigation through belief space, upper confidence bound (UCB), global optimization = infinite bandits, Gaussian Processes, probability of improvement, expected improvement, UCB

> Marc Toussaint University of Stuttgart Summer 2015

Global Optimization

- Is there an optimal way to optimize (in the Blackbox case)?
- Is there a way to find the global optimum instead of only local?

Outline

- Play a game
- Multi-armed bandits
 - Belief state & belief planning
 - Upper Confidence Bound (UCB)
- · Optimization as infinite bandits
 - GPs as belief state
- Standard heuristics:
 - Upper Confidence Bound (GP-UCB)
 - Maximal Probability of Improvement (MPI)
 - Expected Improvement (EI)

Bandits

Bandits

- There are *n* machines.
- Each machine *i* returns a reward $y \sim P(y; \theta_i)$ The machine's parameter θ_i is unknown

Bandits

- Let $a_t \in \{1, .., n\}$ be the choice of machine at time tLet $y_t \in \mathbb{R}$ be the outcome with mean $\langle y_{a_t} \rangle$
- A policy or strategy maps all the history to a new choice:

$$\pi:\; [(a_1,y_1),(a_2,y_2),...,(a_{t\text{-}1},y_{t\text{-}1})]\mapsto a_t$$

• Problem: Find a policy π that

$$\max\left\langle \sum_{t=1}^{T} y_t \right\rangle$$

or

 $\max \langle y_T \rangle$

or other objectives like discounted infinite horizon $\max\left<\sum_{t=1}^{\infty}\gamma^t y_t\right>$

Exploration, **Exploitation**

- "Two effects" of choosing a machine:
 - You collect more data about the machine \rightarrow knowledge
 - You collect reward
- For example
 - Exploration: Choose the next action a_t to $\min \langle H(b_t) \rangle$
 - Exploitation: Choose the next action a_t to $\max \langle y_t \rangle$

The Belief State

- "Knowledge" can be represented in two ways:
 - as the full history

$$h_t = [(a_1, y_1), (a_2, y_2), ..., (a_{t-1}, y_{t-1})]$$

- as the belief

$$b_t(\theta) = P(\theta|h_t)$$

where θ are the unknown parameters $\theta = (\theta_1, .., \theta_n)$ of all machines

- In the bandit case:
 - The belief factorizes $b_t(\theta) = P(\theta|h_t) = \prod_i b_t(\theta_i|h_t)$ e.g. for Gaussian bandits with constant noise, $\theta_i = \mu_i$

$$b_t(\mu_i|h_t) = \mathcal{N}(\mu_i|\hat{y}_i, \hat{s}_i)$$

e.g. for binary bandits, $\theta_i = p_i$, with prior $\text{Beta}(p_i | \alpha, \beta)$:

$$b_t(p_i|h_t) = \text{Beta}(p_i|\alpha + a_{i,t}, \beta + b_{i,t})$$
$$a_{i,t} = \sum_{s=1}^{t-1} [a_s = i][y_s = 0] , \quad b_{i,t} = \sum_{s=1}^{t-1} [a_s = i][y_s = 1]$$
8/32

The Belief MDP

• The process can be modelled as

or as Belief MDP

$$P(b'|y,a,b) = \begin{cases} 1 & \text{if } b' = b'_{[b,a,y]} \\ 0 & \text{otherwise} \end{cases}, \quad P(y|a,b) = \int_{\theta_a} b(\theta_a) \ P(y|\theta_a)$$

- The Belief MDP describes a *different* process: the interaction between the information available to the agent (b_t or h_t) and its actions, where *the agent* uses his current belief to anticipate outcomes, P(y|a, b).
- The belief (or history h_t) is all the information the agent has available; P(y|a, b) the "best" possible anticipation of observations. If it acts optimally in the Belief MDP, it acts optimally in the original problem.

Optimality in the Belief MDP \Rightarrow optimality in the original problem $_{9/32}$

Optimal policies via Belief Planning

- The Belief MDP: $\begin{array}{c} a_1 & a_2 & y_3 \\ \hline b_0 & b_1 & b_2 & b_3 \end{array} & \cdots \\ P(b'|y,a,b) = \begin{cases} 1 & \text{if } b' = b'_{[b,a,y]} \\ 0 & \text{otherwise} \end{cases}, \quad P(y|a,b) = \int_{\theta_a} b(\theta_a) \ P(y|\theta_a) \end{array}$
- Belief Planning: Dynamic Programming on the value function

$$\begin{aligned} \forall_b : \ V_{t-1}(b) &= \max_{\pi} \left\langle \sum_{t=t}^T y_t \right\rangle \\ &= \max_{\pi} \left[\left\langle y_t \right\rangle + \left\langle \sum_{t=t+1}^T y_t \right\rangle \right] \\ &= \max_{a_t} \int_{y_t} P(y_t | a_t, b) \left[y_t + V_t(b'_{[b, a_t, y_t]}) \right] \end{aligned}$$

Optimal policies

- The value function assigns a value (maximal achievable return) to a state of knowledge
- The optimal policy is greedy w.r.t. the value function (in the sense of the max_{at} above)
- Computationally heavy: *b_t* is a probability distribution, *V_t* a function over probability distributions

• The term $\int_{y_t} P(y_t|a_t, b_{t-1}) \left[y_t + V_t(b_{t-1}[a_t, y_t]) \right]$ is related to the *Gittins Index*: it can be computed for each bandit separately.

Example exercise

- Consider 3 binary bandits for T = 10.
 - The belief is 3 Beta distributions $Beta(p_i|\alpha + a_i, \beta + b_i) \rightarrow 6$ integers
 - $T = 10 \rightarrow \text{each integer} \le 10$
 - $V_t(b_t)$ is a function over $\{0, .., 10\}^6$
- Given a prior $\alpha = \beta = 1$,

a) compute the optimal value function and policy for the final reward and the average reward problems,

b) compare with the UCB policy.

Greedy heuristic: Upper Confidence Bound (UCB)

- 1: Initializaiton: Play each machine once
- 2: repeat

3: Play the machine *i* that maximizes $\hat{y}_i + \beta \sqrt{\frac{2 \ln n}{n_i}}$

4: until

 \hat{y}_i is the average reward of machine *i* so far n_i is how often machine *i* has been played so far $n = \sum_i n_i$ is the number of rounds so far β is often chosen as $\beta = 1$

See *Finite-time analysis of the multiarmed bandit problem*, Auer, Cesa-Bianchi & Fischer, Machine learning, 2002.

UCB algorithms

• UCB algorithms determine a confidence interval such that

$$\hat{y}_i - \sigma_i < \langle y_i \rangle < \hat{y}_i + \sigma_i$$

with high probability.

UCB chooses the upper bound of this confidence interval

- Optimism in the face of uncertainty
- Strong bounds on the regret (sub-optimality) of UCB (e.g. Auer et al.)

Conclusions

- The bandit problem is an archetype for
 - Sequential decision making
 - Decisions that influence knowledge as well as rewards/states
 - Exploration/exploitation
- The same aspects are inherent also in global optimization, active learning & RL
- Belief Planning in principle gives the optimal solution
- Greedy Heuristics (UCB) are computationally much more efficient and guarantee bounded regret

Further reading

- ICML 2011 Tutorial Introduction to Bandits: Algorithms and Theory, Jean-Yves Audibert, Rémi Munos
- *Finite-time analysis of the multiarmed bandit problem*, Auer, Cesa-Bianchi & Fischer, Machine learning, 2002.
- On the Gittins Index for Multiarmed Bandits, Richard Weber, Annals of Applied Probability, 1992.

Optimal Value function is submodular.

Global Optimization

Global Optimization

• Let $x \in \mathbb{R}^n$, $f : \mathbb{R}^n \to \mathbb{R}$, find

 $\min_x f(x)$

(I neglect constraints $g(x) \le 0$ and h(x) = 0 here – but could be included.)

 Blackbox optimization: find optimium by sampling values y_t = f(x_t) No access to ∇f or ∇²f
 Observations may be noisy y ~ N(y | f(x_t), σ)

Global Optimization = infinite bandits

- In global optimization f(x) defines a reward for every $x \in \mathbb{R}^n$ - Instead of a finite number of actions a_t we now have x_t
- Optimal Optimization could be defined as: find π : $h_t \mapsto x_t$ that

$$\min\left\langle \sum_{t=1}^{T} f(x_t) \right\rangle$$

or

 $\min\left\langle f(x_T)\right\rangle$

Gaussian Processes as belief

- The unknown "world property" is the function $\theta = f$
- Given a Gaussian Process prior $GP(f|\mu, C)$ over f and a history

$$D_t = [(x_1, y_1), (x_2, y_2), ..., (x_{t-1}, y_{t-1})]$$

the belief is

$$\begin{split} b_t(f) &= P(f \mid D_t) = \mathsf{GP}(f \mid D_t, \mu, C) \\ \mathsf{Mean}(f(x)) &= \hat{f}(x) = \boldsymbol{\kappa}(x) (\boldsymbol{K} + \sigma^2 \mathbf{I})^{-1} \boldsymbol{y} \\ \mathsf{Var}(f(x)) &= \hat{\sigma}(x) = k(x, x) - \boldsymbol{\kappa}(x) (\boldsymbol{K} + \sigma^2 \mathbf{I}_n)^{-1} \boldsymbol{\kappa}(x) \\ \end{split}$$

- Side notes:
 - Don't forget that $Var(y^*|x^*, D) = \sigma^2 + Var(f(x^*)|D)$
 - We can also handle discrete-valued functions f using GP classification

Optimal optimization via belief planning

· As for bandits it holds

$$\begin{aligned} V_{t-1}(b_{t-1}) &= \max_{\pi} \left\langle \sum_{t=t}^{T} y_t \right\rangle \\ &= \max_{x_t} \int_{y_t} P(y_t | x_t, b_{t-1}) \left[y_t + V_t(b_{t-1}[x_t, y_t]) \right] \end{aligned}$$

 $V_{t-1}(b_{t-1})$ is a function over the GP-belief! If we could compute $V_{t-1}(b_{t-1})$ we "optimally optimize"

· I don't know of a minimalistic case where this might be feasible

Conclusions

- · Optimization as a problem of
 - Computation of the belief
 - Belief planning
- Crucial in all of this: the prior P(f)
 - GP prior: smoothness; but also limited: only local correlations! No "discovery" of non-local/structural correlations through the space
 - The latter would require different priors, e.g. over different function classes

Heuristics

1-step heuristics based on GPs

Figure 14. Using kriging, we can estimate the probability that sampling at a given point will 'improve' our solution, in the sense of yielding a value that is equal or better than some target T.

from Jones (2001)

• Maximize Probability of Improvement (MPI)

$$x_t = \operatorname*{argmax}_x \int_{-\infty}^{y^*} \mathcal{N}(y|\hat{f}(x), \hat{\sigma}(x))$$

• Maximize Expected Improvement (EI)

$$x_t = \operatorname*{argmax}_{x} \int_{-\infty}^{y^*} \mathcal{N}(y|\hat{f}(x), \hat{\sigma}(x)) \ (y^* - y)$$

Maximize UCB

$$x_t = \operatorname*{argmax}_{x} \hat{f}(x) + \beta_t \hat{\sigma}(x)$$

(Often, $\beta_t = 1$ is chosen. UCB theory allows for better choices. See Srinivas et al. citation below.)

Each step requires solving an optimization problem

- Note: each argmax on the previous slide is an optimization problem
- As *f̂*, *ô* are given analytically, we have gradients and Hessians. BUT: multi-modal problem.
- In practice:
 - Many restarts of gradient/2nd-order optimization runs
 - Restarts from a grid; from many random points
- We put a lot of effort into carefully selecting just the next query point

From: Information-theoretic regret bounds for gaussian process optimization in the bandit setting Srinivas, Krause, Kakade & Seeger, Information Theory, 2012.

Fig. 2. (a) Example of temperature data collected by a network of 46 sensors at Intel Research Berkeley. (b) and (c) Two iterations of the GP-UCB algorithm. The dark curve indicates the current posterior mean, while the gray bands represent the upper and lower confidence bounds which contain the function with high probability. The "+" mark indicates points that have been sampled before, while the "o" mark shows the point chosen by the GP-UCB algorithm to sample next. It samples points that are either (b) uncertain or have (c) high posterior mean.

Fig. 6. Mean average regret: GP-UCB and various heuristics on (a) synthetic and (b, c) sensor network data.

Fig. 7. Mean minimum regret: GP-UCB and various heuristics on (a) synthetic, and (b, c) sensor network data.

Pitfall of this approach

- A real issue, in my view, is the choice of kernel (i.e. prior P(f))
 - 'small' kernel: almost exhaustive search
 - 'wide' kernel: miss local optima
 - adapting/choosing kernel online (with CV): might fail
 - real f might be non-stationary
 - non RBF kernels? Too strong prior, strange extrapolation
- Assuming that we have the right prior P(f) is really a strong assumption

Further reading

- Classically, such methods are known as Kriging
- Information-theoretic regret bounds for gaussian process optimization in the bandit setting Srinivas, Krause, Kakade & Seeger, Information Theory, 2012.
- Efficient global optimization of expensive black-box functions. Jones, Schonlau, & Welch, Journal of Global Optimization, 1998.
- A taxonomy of global optimization methods based on response surfaces Jones, Journal of Global Optimization, 2001.
- *Explicit local models: Towards optimal optimization algorithms*, Poland, Technical Report No. IDSIA-09-04, 2004.

Entropy Search

slides by Philipp Hennig

P. Hennig & C. Schuler: *Entropy Search for Information-Efficient Global Optimization*, JMLR 13 (2012).

Predictive Entropy Search

- Hernández-Lobato, Hoffman & Ghahraman: *Predictive Entropy Search for Efficient Global Optimization of Black-box Functions*, NIPS 2014.
- Also for constraints!
- Code: https://github.com/HIPS/Spearmint/