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Abstract

We will discuss some analogies between internal gauge theories and gravity in
order to better understand the charge concept in gravity. A dimensional analysis
of gauge theories in general and a strict definition of elementary, monopole, and
topological charges are applied to electromagnetism and to teleparallelism, a gauge
theoretical formulation of Einstein gravity.

As a result we inevitably find that the gravitational coupling constant has di-
mension A/I2, the mass parameter of a particle dimension /I, and the Schwarzschild
mass parameter dimension ! (where [ means length). These dimensions confirm the
meaning of mass as elementary and as monopole charge of the translation group, re-
spectively. In detail, we find that the Schwarzschild mass parameter is a quasi-electric
monopole charge of the time translation whereas the NUT parameter is a quasi-
magnetic monopole charge of the time translation as well as a topological charge.
The Kerr parameter and the electric and magnetic charges are interpreted similarly.
We conclude that each elementary charge of a Casimir operator of the gauge group
is the source of a (quasi-electric) monopole charge of the respective Killing vector.

Keywords: gauge theory of gravity, Kaluza-Klein, charge, monopole, mass, Taub-
NUT.
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1 INTRODUCTION 2
1 Introduction

It was in the fifties when Yang & Mills [1] and Utiyama [2] formulated gauge theories
of the group SU(2) and of general semi-simple Lie groups, respectively. For the history
see [3]. The great success of such theories has also influenced modern formulations of
gravity. For a general formulation of gravity as a gauge theory we refer to [4]. A simpler
introduction is [5]. There are many analogies between internal and external gauge theories,
i.e. between Yang-Mills type theories and gauge theories of gravity (see table 1). The main
difference is the fact that in external gauge theories one needs to solder the gauge to the
base manifold, i.e. the gauge applies to spacetime and not to internal fibres. In standard
formulations of gauge theories of gravity, this leads to the additional role of the coframe
¥* as a translational gauge potential.

Any gauge theory of gravity must include the translational gauge since otherwise gravity
would not couple to the energy-momentum current. This is also natural since Minkowski
space has an affine structure. In the following we will focus on the purely translational
gauge theory, namely teleparallelism. With a specific lagrangian, this theory is equivalent
to Einstein gravity. In section 2, a short dimensional analysis of general gauge theories
leads to some interesting facts in the case of a translational gauge. The Kaluza-Klein
formulation of electromagnetism makes a comparison with gravity very simple. In section
3 we will give the definitions of monopole, topological, and elementary charges and will
discuss the meaning of mass as elementary charge. Finally, in section 4, we will analyze
standard solutions of Einstein gravity of the Taub-NUT and Kerr-Newman type. We
present the mass parameter as (quasi-electric) monopole charge and the NUT parameter
as a (quasi-magnetic) monopole and topological charge.

2 Dimensional analysis of gauge theories

The essential fields involved in a gauge theory of a Lie group G (with algebra G) are the
connection A, the field strength F', the excitation H, the lagrangian £, and the Noether
current Y. From a geometrical point of view, the connection is introduced as a G-valued
1-form on the principle bundle or, locally, as a G-valued 1-form on spacetime, i.e. A €
AY(M,G). Tt yields the covariant exterior derivative D = d + A.

By its very definition, the exterior differentiation operator d is dimensionless, [d] = 1.
Hence we also require the connection to be dimensionless, [A] = 1. Now we need to give
eractly two definitions in order to find all the remaining dimensions. First, we choose
to define the dimension of a lagrangian £ to be [£] = A. In the context of a classical
gauge theory # is merely a name of a dimension as introduced here. However, thinking of
Huygen'’s principle and the path integral method, one may also call & a phase/2m unit. And
second, we define the basis elements A, of the algebra G to have the dimension [\,;] = g/h.
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theory gauge group connection field strength
general gauge theory | semi-simple Lie group G | A € A'(M,G) | F = DT € A%(M, Q)
electrodynamics U(1) A F =dA
(non-physical) affine group T R
affine gauge theory soldered affine group T2, 9= R.A, T®
teleparallelism soldered translations 9 T = d9°

Table 1: Overview on gauge formalisms: Gravity may be described by formulating a gauge
theory of the affine group. However, one has to ensure that the group, i.e. the Lie-algebra
valued connection, applies to spacetime — is soldered to spacetime. This is done by splitting
the connection into a linear part I',? (with matrix indices ,? that work on the basis e,
of the local tangent space) and an inhomogeneous part 9 (that replaces the holonomic
coframe dz* and thereby realizes a translational gauge). Analogously, the field strength
splits into the curvature R,” and the torsion 7. Discarding the linear gauge (I',” = 0),
the theory reduces to teleparallelism.

Again, so far g is merely a name of a dimension introduced here. However, in the case of
electromagnetism, it may be replaced by the unit e. Now it is easy to display the dimensions
of the components of A = A%\, = A;* A\, dz® and F = F* )\, = F;;° A\, dz* A\ dz?. You will
find them in table 2.

In Yang-Mills theories a lagrangian typically describes propagating gauge fields, i.e. it is
proportional to a square term of F'. For generality we only assume £ = (FAH) = F*AH,,
where we introduced the excitation H, which is a G-valued 2-form, and the metric { , )
in G. We read off the dimension of the excitation H = H® A, = H;;* A\, dz* A dz? and of
the Noether current X, := §L£/JA®. For consistency, the dimension of the metric has to
be [( , )] = K?/g%. Tt follows [(As, Ay)] = 1. The dimension of [H|/[F] = ¢g?/h may be
interpreted as the dimension of the coupling constant 1/« of a dynamical lagrangian with
H~1/k*F.

In the case of electrodynamics, we have only one index a = 0 and we set [A\] = e/h. We
see that the components F*, H® and X, have the conventional dimensions, whereas the
dimensions of the fields F', H, ¥ are more unfamiliar. In the case of a translational gauge
theory, we assign the dimension 1/ to the generators and find that [1/x] = A/I?. Since
this dimensionality includes a length dimension, perturbation theory does not work.

When embedding electrodynamics in an extra dimension & la Kaluza-Klein, the U(1) gauge
is directly represented by the translation along the 5th dimension. We can introduce a
length unit s of this 5th dimension by identifying e/h = 1/l5. This is a geometrical
interpretation of the electric unit e as phase/2m per length. Besides, if the 5th dimension is
U(1) with perimeter Ls, it seems natural that this ‘phase/2m per length’-unit e is quantized
in quanta of 1/Ls. Hence l5 = hLs.
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. . . in translational
in general | in electrodynamics .
gauge theories

[L:= F%A H,] =: h Wb C h

el = g/h 1/Wb 1/1

[A = A%),] = 1 1 1

[F = F%)\,] 1 1 1

[H = H*)\,] g*/h C/Wb h/12

[A® = A;° dz'] fi/g Wb l

[F* = F;;° dz* A da7] h/g Wb l

[H® = H;;* dz* A da?] g C R/l

(e =0L/0A% g C R/l

[(, )] =1/[AP h*/g’ Wh? X

[(F, H)] h Wb C h

[1/k] = [H]/[F] = [H|/[F] | ¢*°/h C/Wh h/12

[€] = [M] = [F] 1 1 1

[£9] = [M®] = [F7] h/g Wb !

7] g C K/l

Table 2: The table displays the dimensions of essential fields involved in a gauge theory.
In particular, it gives the SI-units in the case of electrodynamics and the dimensions for a
translational gauge theory. The first three rows in this table are definitions — the rest is a
consequence. The last block includes the dimensions of monopole and topological charges.
The SI-units used in electrodynamics are C=Coulomb and Wb=Weber.

Finally we note that the dimension of the hodge star * in n dimensions when applied on a
p-form is [*] = ["7?P.

3 Monopoles, topological and elementary charges

We will define different types of charges, namely monopole, topological, and elementary
charges. We identify such charges in internal and external gauge theories and then point
out the appropriate analogies.

We start by defining the two types of monopole charges and a topological charge. These
charges are properties of the gauge configuration given by the gauge potential A and the
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00 U(1)
loc
U(1) x S?
slice in spacetime:
the Dirac string
monopole’s 5 loc .
S [0,1] x S

location

Figure 1: The field strength of the Dirac monopole [6] F = pdQ2 = p sinfdf A dp has
no global potential A with F = dA. Dirac concluded that such a monopole must have a
string (slice in spacetime) attached to it. If we slice spacetime along the negative z-axis,
say, F has a regular potential A = p (1 —cos#) dp. Alternatively, electomagnetism may be
formulated as a gauge theory on a U(1) bundle over spacetime. Topologically the spacetime
around the (sigular) monopole world path is (R3,.. \ {0}) X Riime ~ S?, where o denotes
the monopole’s location. Hence, all field configurations may be classified topologically by
investigating U(1) bundles over S?. It turns out that an integer number (the magnetic
charge) classifies all field configurations. The Moebius strip ([0, 1] bundle over S') allows
to visualize a topologically non-trivial bundle.

gauge field strength F.

1
£ := lim — f *F quasi-electric monopole charge, (1)
r—oo 47
Sn=2(r)
1
M = lim — f F, quasi-magnetic monopole charge, (2)
r—oo 41
52(r)
1
Cr:= lim — f (ANF), Chern-Simons form. (3)
r—o0 47
S2(r)x1I

We will discuss I below. The motivation for the definition of £ is obvious from the analogy
to Maxwell’s inhomogeneous equation. The definition of M may be motivated by including
magnetic charges in Maxwell’s theory. Usually this is done by modifying the homogeneous
Maxwell equation and introducing a source term on its rhs: dF = pya,. But it might
be preferable to interpret M as the topological invariant associated with the first Chern
character class [F| in the second cohomology (see below). With this we don’t need to
introduce magnetic source terms into the homogeneous Maxwell equation but rather in-
terpret magnetic monopoles as a topological feature — which one may visualize as a Dirac
string [6] or rather accept as a feature of a U(1)-bundle (see figure 1). For an introduction
to such mathematical structures one may refer to the textbook [7]. We choose the notion
quasi-electric/-magnetic to remind us of the analogies with electromagnetism. Since these
definitions are general and not restricted to theories of gravitation, we do not choose the
notion gravi-electric/-magnetic.
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The topological charge C is the fruit of the Chern-Weil theorem which states that it is a
topological invariant. We remind the reader of the essential ideas of this theorem. For
details see [7]. First, consider the curvature F € A%*(M,G) on a principle bundle over
the base manifold M and formulate polynomials P(F') of this curvature. Then, search
for such polynomials that are invariant under the adjoint action of the structure group G,
ie. Vg € G: P(AdyF) = P(F). Given such an invariant polynomial of r-th order, the
Chern-Weil theorem states the following:

(i) P(F) is closed, i.e. dP(F) = 0. Hence we found an element of the 2r-th cohomology
group [P(F)] € H*(M). Here, [P(F)] denotes the equivalence class of all 2r-forms that
differ from P(F') only by an exact form. [P(F')| is called characteristic class. Note that
each monomial in this polynomial is also invariant.

(ii) If we have two curvatures F' and F' on the same bundle it follows that [P(F)| = [P(F")].
This means that the characteristic class [P(F')] is independent of F' and depends only on
the topology of the bundle. It is a topological invariant.

(iii) Since P(F) is closed we find a local potential on the subset U of M: P(F) = dQ‘U.
It follows that [@] is an element of the (2r—1)-th cohomology H*~!(8U) and is thus a
topological invariant of QU. @) is called Chern-Simons form.

In fact, we find the invariant polynomials (or monomials) P;(F) = F and P,(F) = tr(F A
F), the first of which is called 1st Chern character class and the second 1st Pontrjagin
class. We also find the Chern-Simons form tr(A A F) of the 1st Pontrjagin class.

Hence, the 1st Chern character class [F] is an element of the 2nd cohomology. The inter-
gration of F' over a closed 2-plane S2, i.e. the quasi-magnetic monopole charge M, thus
leads to a number that specifies the cohomology class. Similarly, the Chern-Simons form
(AN F) is an element of the 3rd cohomology and we need a closed 3-plane for integration.
In the case of a singular monopole world path in a U(1) bundle, a natural choice for this
3-plane is S? x U(1), with |U(1)| = Ls. The integration of the Chern-Simons term Cy )
over this plane thus leads to a finite number classifying the cohomology class. Analogously
we have a second choice I = Ryjme to form a 3-plane S? x I. However, this plane is not
compact and will not lead to a finite number. We solve this problem by restricting I to a
finite time interval Iy with |Iz| = T. Still, the 3-plane S? x Ir is not closed and, strictly
speaking, Cr, may not be considered a topological invariant. Thus we have to act with
some caution.

Let us discuss the notion of an elementary charge. One of the most beautiful things in
physics is the success of particle physics in classifying all particles with the help of repre-
sentation theory. This algebraic approach simply postulates that objects in nature must
be an element of a representation of some symmetry. Objects (particles/states) that are
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inseparable are called elementary. This notion turns out to coincide with the mathematical
notion of irreducibility. Both mean inseparable without loosing the symmetry.

With elementary charge we denote those invariants that classify an elementary particle,
i.e. the irreducible representation the particle is an element of. Such a classification can be
performed by finding all Casimir operators in the group algebra. These are polynomials
of the group generators and commute with every group element. Hence, their eigenvalues,
when applied on some particle field, are invariant under all symmetry transformations.

The Poincaré group, for example, has the Casimir operators
C, := P,P* (4)
1
Cy:=W,W# with W, := EeuamLaﬁP"’ : (5)

Here the translation operator P* represents the particle momentum, L®? are the generators
of Lorentz rotations, and the so-called Pauli-Lubanski vector W* represents the particle
spin. If nature incorporates the Poincaré symmetry, all particles can be classified by
eigenvalues of C; (mass square) and C, (spin square). The classification with respect to
their mass is guaranteed by the Dirac equation (for the Dirac spinor representation) or
the Klein-Gordon equation (for the scalar representation). All these equations require the
dimension %/l for the mass parameter. (We take ¢ = 1.)

In general, if C' is a polynomial of rth order of the group generators and if Z" is an invariant
eigenvalue of C, i.e. (F"C —TI") ¢ = 0 for some eigenvector ¢, then we call Z an elementary
charge. If we assume that C is built from generators with dimension [A], the dimension
of Z is [Z] = A[A]. This leads to the remarkable relation between the dimension of an
elementary charge and that of a monopole charge:

Z] = [1/x] [€] - (6)

Some further comments on mass as an elementary charge and its dimension: First, the
dimension of the mass parameter [m] = %/l may be called phase/27 per length. In fact,
the most obvious argument for this interpretation is the point particle action [mds. In
this picture, if you identify a world path with a strap, then mass is the twist of this strap
per length. Also note that A, = %i/m may be identified with the Compton wave length
of the particle. Second, in 5D Kaluza-Klein space the electric charge ¢ is just as well an
eigenvalue of the Casimir operator of the translation along the 5th dimension. In this view,
electric charge is very similar to mass. Just as mass measures the horizontal momentum,
the electric charge measures the vertical momentum. In fact, Bleeker [8] defined electric
charge as the ‘vertical velocity’ of a path on a U(1)-bundle. Third, Rosen [10] introduced a
massive Klein-Gordon (i.e. Proca) field by multiplying a phase exp(—imyt) to a real scalar
(1-form) field ¢. Unfortunately, Rosen does not motivate this in a very detailed manner.
Very interestingly, in the case of flat spacetime, the mass my introduced by attaching this
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phase exp(—imgt) to the scalar field ¢ cancels with the mass m; introduced by adding a
square term (my)?(¢ A *@) to the lagrangian.

4 Monopole charges of the translational gauge

We can now apply the charge definitions to analyze standard solutions of Einstein gravity
for monopole charges. We concentrate on a subclass of the Plebanski-Demianski class of
solutions including the Kerr-Newman and Taub-NUT solutions. For the monopole anal-
ysis we formulate them as a solution of a translational gauge theory of gravity, namely
teleparallelism, and find, indeed, quasi-electric and quasi-magnetic monopoles in the gauge
of some translations.

In spherical coordinates (¢, 7,6, ¢) the Kerr-Newman metric with mass parameter m, Kerr
parameter 7, electric charge ¢, and magnetic charge p reads

g="eP -9l - e -9, (7)
X - A N 3

ﬂoz%dT, ﬁlzédr, ﬁzzﬁsianH, 193:§d0, (8)
dr =dt — jsin?fdy, do=(r*+ 7% dp—jdt, (9)
szr2—2mr+j2+%(q2+p2), P=sinf, A?=r’+;"cos’f. (10)

This notation might confuse at first. It is the direct analog of the notation Plebanski and
Demianski used in their paper [9]. It has a clear structure and can easily be modified into
other solutions of the Plebanski-Demianski class. The metric solves the coupled Einstein-
Maxwell equations if we choose the electromagnetic potential as

A= grdr +pcosfdo) . (11)

o
This potential is the analog of the potential A = ¢/rdt + pcosfdy of an electric and
magnetic charge in flat spacetime.

For the monopole analysis, we translate this solution into a 5D Kaluza-Klein-type teleparal-
lelism. This simply means that we add a 5th dimension that represents the electromagnetic
part of the theory:

9= - e P e’ -Pe - e, (12)

g 1
195=d:v5+§(qrd7'+pcos¢9da). (13)
The 5th covector 9° represents the electromagnetic gauge potential. The field strength of
this gauge theory is the torsion 7* = d¥*. The configuration solves the vacuum field equa-
tion dH* = 0 of the teleparallelism theory. Here, H® is the excitation of the translational
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gauge and is composed out of the three irreducible pieces of T® such that the theory is
equivalent to 5D Einstein gravity:

1 5 1
He = —*((1)T“ — 3@a 4 5(3)T“) or  Ha=—3K" Aoy, (14)

where K*¥ is the contortion. For details see [4] or [5].

The following charges for this gauge configuration are calculated straightforwardly:

K

5:—m8t —jzap —|-q(95, Mz—p(%, CU(l):—pL5, CITZO. (15)
Consider £ and recognize that we have a quasi-electric monopole charge £ = —m in the
time translation, a quasi-electric monopole charge £¥ = —j7 in the translation along 9,

(which is actually a rotation and the charge represents an angular momentum)!, and a
(quasi-)electric monopole charge £° = ¢ in the translation along 05 (i.e. the U(1) gauge of
electrodynamics). In this solution all Killing vectors carry quasi-electric monopole charges.
In fact, it seem quite plausible that the elementary charges of the three Casimir opera-
tors (momentum square, Pauli-Lubanski square, and the 5th translation) of 5D Kaluza-
Klein/Poincaré symmetry are the sources of the quasi-electric monopole charges of the
Killing vectors that correspond to these Casimirs.

As we are interested in dimensions, we find that the mass parameter has dimension [m| = [,
the angular momentum per mass unit has dimension [j] = 1, and, if we measure the length
along the 5th dimension in units of /5, the electric charge has dimension [¢] = l5. In the
previous dimensional discussion of electrodynamics, we defined 1/l = e/h and [1/k] =
e?/h = h/I2. Here our results are consistent with eq. (6): The dimension of the elementary
charge [Z] = e = h/l5 is equal to the coupling constant [1/k] times the dimension of the
quasi-electric monopole charge [£] = [¢] = l5. The same holds for the mass.

Considering M we are not surprised that M® = —p is a (quasi-)magnetic monopole charge
of the 5th translation. The non-trivial Chern-Simons form Cy(;) confirms the topological
feature of magnetic monopoles in the U(1)-bundle.

Let us turn to the Taub-NUT solution with mass parameter m, NUT parameter n, and
electric charge q. Within the previous notation, i.e. with the coframe and metric defined

1Usually, one associates a gravi-magnetic or gravito-magnetic effect with the gravitational field of the
Kerr solution. This is sensible since the rotating mass produces a field that is in analogy to the magnetic
field produced by rotating electrons. However, rotating mass is not an analogy to a magnetic monopole.
Instead, our calculation definitely proves that it is rather an analogy to an electric monopole — but with
respect to the gauge of orbital translations.
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electric monopole Schwarzschild solution
A=-tdt [T =9 —dt=(J1-2_1)dt — -mat
F=—%dtAdr T = —magtndr
magnetic monopole Taub-NUT solution
A=p(1l—cosb)dyp (™0 = 90 — gt —s 2n(1 — cosh) dy
F=dA=pdQ T Hr—j>o°3nd9

Table 3: The table compares the electric monopole with the Schwarzschild solution and
the magnetic monopole with the Taub-NUT solution. The gravitational solutions are
presented in a teleparallel formalism. The analogies between the electro-magnetic field
strength F' and the field strength of time translation T confirm our interpretation of the
mass parameter m and the NUT parameter n. The identification of ¥° — dt with the gauge
potential of time translation takes the soldering into account.

in (12, 8, 13), the solution reads

dr =dt —2ncosfdp, do=(r*+n?)dy, (16)
p=0, Q=r’—2mr—n®*+¢*/4, P=sinf, A’=r’+n?. (17)

The result of the monopole analysis is
8:—mat +q(95, M=—2n8t, CU(l):O, C[T:—2’nT. (18)

This clearly presents the NUT parameter n as a quasi-magnetic monopole charge of the
time translation. Table 3 gives another illustration of these results.

The reader may verify and have an insight into the calculations by investigating our input
files for the computer algebra system Reduce. For this, download the files kerrnut.exi
and magtools from the internet page
http://www.thp.uni-koeln.de/"mt/work/1999charge/ .

We use Reduce version 3.6 together with the Excalc package. You find help pages at
http://www.uni-koeln.de/REDUCE/3.6/doc/reduce/ and
http://www.uni-koeln.de/REDUCE/3.6/doc/excalc/ .

Contact mt@thp.uni-koeln.de for any problems in this context.

5 Discussion

The main results of this paper are summarized in table 2 and egs. (6), (15), and (18). Also
the observation concerning the correspondence of elementary and quasi-electric monopole
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charges on the one hand, and of Casimir operators and Killing vectors on the other hand
is important. I want to add some comments:

We proved that in the Plebanski-Demianski class of solutions [9] (when reformulated as
teleparallel solutions) the five parameters m, n, ¢, p, and j may be related to monopole
charges. Unfortunately, we could not confirm the same for the acceleration parameter a.
(The reason might be the topologically non-trivial coordinate transformation eq. (4.4) in
[9].) However, for consistency we may expect that a relates to a quasi-magnetic charge of
the ‘orbital translation’ along 0,. Assuming this, we agree with Plebanski and Demianski
on their ordering of the parameters: The six parameters should be ordered as three pairs
(m, n), (4, a), and (g, p) each pair of which belongs to the time translation, the orbital
translation, and the U(1)-translation, respectively. In each pair the first parameter denotes
the quasi-electric charge and the second parameter the quasi-magnetic charge of these
translations.

It seems to be commonly accepted that mass represents a quasi-electric charge. Also
in the Riemannian formulation of Einstein gravity there are arguments in favour of this
interpretation. However, I believe that the Riemannian formulation can impossibly recover
mass as a quasi-electric charge of the time-translation. Hence, the teleparallel formulation
of Einstein gravity has considerable advantages over the Riemannian formulation. Also
the explicit presentation of the NUT parameter as quasi-magnetic monopole charge of the
time-translation seems new.
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