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Abstract – A novel iterative approach based on a modular 

neural architecture [1] is presented for the classification of SAR 

images of sea ice. Additionally to the local image information 

the algorithm uses spatial context information derived from the 

first iteration of the algorithm and refines it in the subsequent 

iterations. The modular structure of the neural network is used 

with the aim to capture structural features of the SAR images of 

sea ice in the Marginal Ice Zone.  
 

I.   INTRODUCTION 
 

Following the Marr’s paradigm, the different stages of 

image prepossessing, feature extraction, classification, and 

post-processing are usually treated separately and follow 

each other in a classification system. Such an approach is 

widely adopted because it allows decomposition of a complex 

problem into a number of simpler subtasks. The known 

drawback of the classical approach is that errors made at one 

of the processing steps will propagate further to the next 

stages of the algorithm increasing the classification error. For 

example, incorrect image segmentation will lead to the wrong 

class assignment of the segments. Another common problem 

is that segments are not “aware” of the surrounding segments 

so that complex objects consisting of several segments would 

not be treated as a single object. An observation is that the 

knowledge of classes of the segments surrounding the current 

segment could be useful for its classification. This is however 

difficult to implement in practice because the surrounding 

segments need to be classified first and this classification, 

supposedly, also should use the spatial context information. A 

general solution can be in organization of an iterative 

classification algorithm in which spatial context information 

is analyzed and used in subsequent iterations. In this 

presentation we propose an iterative algorithm that 

incorporates information on spatial correlations between 

classes in the image obtained from the first iteration and 

refines this information and the classification  in the 

following iterations. The use of spatial context information 

derived from the surrounding segments in the classified image 

differs our approach from other iterative algorithms reported 

in the literature [2]. 

We apply the algorithm to classification ERS SAR images 

of sea ice in the Marginal Ice Zone (MIZ). Classification of 

sea ice in MIZ is important for navigation in these regions 

and for accurate evaluation of heat flaxes between ocean and 

atmosphere used in global climate modeling. MIZ is 

characterized by the transition from open water to thick ice 

types such as multi year ice. The classifier based on local 

information i.e. backscatter coefficients would show poor 

results because backscatter coefficients of several sea ice 

types and open water overlap significantly. The ice within the 

MIZ can be visually separated into at least two sub-zones. 

Classification of ice within these sub-zones can be done more 

accurately. This observation encouraged us to use a modular 

network architecture as classifier, as described in the next 

section. The modular network decomposes the complex task 

into two (in our application) subtasks. Because the task 

decomposition is done implicitly by the algorithm, each task 

does not necessarily correspond to a classification of ice 

within each ice zone. However, in Section V the results of our 

experiments reveal that the task decomposition is done in a 

sensible and interpretable way. 
 

II.   PROPOSED ARCHITECTURE 
 

The proposed system architecture is presented in Fig 1. 

There are two main features determining its performance: 
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Figure 2. Structure of the network 

modularity of the classifier network and an iterative 
classification procedure described below. 
 

A. Iterative classification procedure 
 

The iterative training and classification can be realized 
independently of the type of the classifier network used in the 
study. Suppose that a single feed-forward neural network is 
initially trained by back-propagation using image brightness, 
texture, and other image features. After the first iteration of 
the algorithm the classified image still contains a number of 
misclassified regions in each of the ice sub-zones, as it will be 
shown later. To cope with this negative effect we propose to 
use an iterative classification scheme to incorporate context 
information on surrounding segments in subsequent 
iterations. The idea behind this approach is based on the 
observation that only particular combinations of ice classes 
coexist in some image areas. If an image segment surrounded 
by other segments represents a “non typical” combination of 

segments according to the training data, this segment should 

preferably be assigned to another class. The pseudo-code of 

the algorithm is given in the Table I. 

In each iteration, the current classifier gets, as input, spatial 

context features calculated from the output of the previous 

classifier plus local image information. Thus, the better the 

classifiers become, the more exact are the context features 

calculated from their output and the better the input data for 

the next classifier. Eventually, this bootstraps better and better 

classifiers that provide better and better input data for the next 

classifier. Because during the all iterations of the algorithm 

the local image features are available, some form of 

relaxation should take place so that local image information 

and the context information derived from the image would 

agree well. An assumption made here is that sufficiently large 

number of test vectors is correctly classified at the first 

iteration of the algorithm. 

To extract the context information, the segments in the 

output are identified using connectivity analysis. For each 

classification segment the following parameters are 

computed: 1) the total number of pixels in the segment, 2) the 

total number of pixels in the surrounding segments assigned 

to different ice classes and 3) the number of pixels in the 

surrounding segments located at the border with the current 

segment assigned to different ice classes. Six ice classes are 

used in an application, therefore there are 13 context features 

additional to the 16 local image features. The local features 

are histogram based features, grey level co-occurrence matrix 

(GLCM) texture, and autocorrelation function based features, 

all of them computed in a small 15×15 window. The 

interpixel distance used for computing the GLCM is set equal 

to 2. The GLCM is averaged for the three different directions 

0°, 45°, and 90° to account for possible rotation of ice.  
 

B. A modular neural architecture 
 

The modular network proposed in [1] consists of two types 

of networks: expert networks and a gaiting network. Its 

structure is shown in Fig 2. The expert neural networks are 

usual feed-forward neural networks. During classification 

they compete to classify the input feature vector x . The 

gaiting network assigns the decision (i.e. which expert neural 

network will produce the system’s output) to one of the 

experts.  

As mentioned above we apply the modular network with the 

hope that, firstly, the experts would recognize the ice within 

particular image areas related to the ice structure and, 

secondly, a gaiting neural network would assign the task to 

one of the experts. The assignment may be possible based on 

spatial context information derived in the outer classification 

space. 

The competition is realised by the so called competitive 

group of neurons. There are two neurons in the centre of Fig. 

2 linked by a bi-directional competitive connection. To 

describe the neural network performance, suppose that the 

two classifiers and the gaiting network have been trained. 

When presenting a test vector x  to the system, the expert i  

generates an output vector )(xfy ii = . The combined 

response cy  from the two experts (m = 2) is defined as the 

softmax linear combination: 
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 where iĝ  is the gaiting network output, ig  its weight in 

linear combination, and β  is a parameter. The use of the 

TABLE I 
PSEUDO-CODE OF THE ALGORITHM (TRAINING) 

Data: X - local texture and histogram based image features 

         kX̂  - spatial context features extracted form  

               the classification segments surrounding the current one 
          kY - classifier output, T -  target values     

1. Initialize 0X̂  = 0 and k = 0 

2. Initialize the network randomly 

3. Train the network on  ( kXX ˆ⊕ , T ) 

4. Evaluate the network on kXX ˆ⊕  leading to kY  

5. Recalculate 1
ˆ

+kX  from kY (connectivity analysis) 
6. Set k = k+1 and go to step 2 if stopping conditions are not 

fulfilled 
The sign ⊕  indicates concatenation of features in the data sets 

output 

input 



Figure 3. Mosaic of six ERS-1 SAR images 08.03.1992 (a), sea ice 
classification maps obtained after the first (b) and the second (c) iterations 
of the algorithm, and the map of the competitive neuron states (d). 

b) c) d) a)     ESA 1998 
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softmax activation function ensures that the weights are non-
negative and sum to one. The effect of the softmax 
competition is that it increases the weight ig of the expert 

having higher output iĝ than the others and decrease it for all 

other experts. As it is seen from (1) the gaiting network 
outputs have multiplicative effect on the expert output. For 
instance, by generating ig = 0 or 1 the gaiting network 

completely discards or relies on the particular expert, 
respectively. The gaiting connections are shown by the 
dotted lines in Fig 2. Different learning methods for the 
modular architectures are described in [3]. In the current 
application we used the gradient based method.  

 

IV.   DATA 
 

In the current experiments we used two stripes of ERS-1 
SAR images, each consists of 6 images. The data was 
obtained on March 5 and 8, 1992 during the 
SIZEX92experiment. Sub-satellite in-situ data are available 
and have been generalized when defining ice classes and 
selecting training regions for each ice class as shown in Fig. 
3a. The upper part of the images contains mostly thick ice 
types, except new ice in small polynyas. The lower part of 
the images contains new ice, pancake ice, and open water 
areas. 

 
V.  RESULTS AND DISCUSSION 

 

The sea ice classification maps are given in Fig. 3b,c. The 
first iteration of the algorithm (Fig. 3b) produces a map 
containing a large number of small fragments often 
appearing as noise-like patterns. At this stage the spatial 
context information is not used. The typical classification 
errors are: some areas of multi-year ice in the upper part of 
the image are misclassified as open water and small floes of 
first year ice; some areas of open water areas are 
misclassified as pancake and first year ice in the lower part 
of the image. The second iteration of the algorithm, where the 
context information derived from the first iteration is used, 
largely improves classification results as seen from the Fig. 
3c. We found that 2-3 iterations may be sufficient for the 
improvement of the results. A map of gaiting neural network 
states for one of the experts is presented in Fig. 3d. It shows 
that the expert specializes in classification of ice types located 
in the central part of the image (dark fragment). The other 
expert classifies thick ice types and open water. We would 
like to mention that this partitioning has internally emerged in 
the modular network in an unsupervised fashion. The training 
process is however completely supervised. 
 

V.  CONCLUSIONS 
 

We have presented a sea ice classification algorithm that 
possesses two interesting features: iterative character and 
modularity. The application of the developed algorithm leads 
to improved ice classification. The classification emerges as a 
complex interaction of two processes, recursion and 
modularity. The analysis of this interaction is subject of future 
research. At the current stage we attribute a larger part of the 

improvement to the iterative classification, although the 
modular network shows a meaningful behavior. We believe 
that the algorithm could be applied and tested in other areas 
of remote sensing where some structural image information is 
preserved. 
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