
Factorial Representations
to Generate Arbitrary Search Distributions

Marc Toussaint
Institute for Adaptive and Neural Computation

University of Edinburgh, 5 Forrest Hill
Edinburgh EH1 2QL, Scotland, UK

mtoussai@inf.ed.ac.uk

ABSTRACT
A powerful approach to search is to try to learn a distri-
bution of good solutions (in particular of the dependen-
cies between their variables) and use this distribution as
a basis to sample new search points. Existing algorithms
learn the search distribution directly on the given prob-
lem representation. We ask how search distributions can
be modeled indirectly by a proper choice of factorial genetic
code. For instance, instead of learning a direct probabilis-
tic model of the dependencies between variables (like BOA
does), one can alternatively learn a genetic representation of
solutions on which these dependencies vanish. We consider
questions like: Can every distribution be induced indirectly
by a proper factorial representation? How can such repre-
sentations be constructed from data? Are specific genera-
tive representations, like grammars or L-systems, universal
w.r.t. inducing arbitrary distributions? We will consider la-
tent variable probabilistic models as a framework to address
such questions and thereby also establish relations to ma-
chine learning concepts like ICA.

Categories and Subject Descriptors
F.2 [Analysis of algorithms and problem complexity]:
General

General Terms
Algorithms, design, theory

Keywords
Search, probabilistic models, representations, genetic code

1. INTRODUCTION
Searching for a solution to a problem becomes complex

when many variables of the solution interact. Estimation-
of-Distribution Algorithms (EDAs, or Probabilistic model-
building Genetic Algorithms [9]) are one approach to address

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’05, June 25–29, 2005, Washington, DC, USA.
Copyright 2005 ACM 1-59593-097-3/05/0006 ...$5.00.

such problems: One tries to learn a model of the distribution
of previously found good samples. Learning such a model
also implies to analyze the dependencies between variables.
The model is then used to sample new search points.

Existing EDAs focus on learning probabilistic models di-
rectly on the given problem representation. If on this rep-
resentation the dependencies between variables are com-
plex, complex probabilistic models (like dependency trees
or graphical models) have to be found.

From a biological perspective, one may argue that such
search schemes can hardly be interpreted as an abstraction
of an evolutionary processes based on independent muta-
tional incidents—and thus do not directly help to under-
stand how evolution was able to find complex solutions.
From the optimization point of view, one may ask whether
these methods could in principle scale up to situations where
solutions are formed of millions of interacting variables, even
when the interactions are actually not too complex because
they follow certain patterns (cf. [4]).

The approach to (re-)represent solutions in such a way
that dependencies between variables vanish can be regarded
as an antipode to the approach to learn dependencies di-
rectly on the problem representation. On the factorial rep-
resentation, model-building (or search) is easy, while finding
such a representation involves the difficult task of analyzing
dependencies.

The general question we consider in this paper is how fac-
torial representations can be found for arbitrary distribu-
tions. Since this is genuinely a machine learning question,
we embed the discussion in machine learning concepts, es-
pecially latent variable models, which become in some sense
a substitute for the notion of a (deterministic) genotype-
phenotype mapping. This shift in notion does not lead to
much more generality but it considerably simplifies the ques-
tions addressed in this paper and establishes insightful rela-
tions between problems like independent component analy-
sis and the problem of learning genetic representations.

We will construct explicit factorial codes for certain kinds
of distributions. One finds quickly that it is easy to con-
struct some factorial representation for any distribution—in
particular real-valued representations. But we will introduce
specific (discrete-valued) codes that seem more promising as
a basis for combinatorial search and GAs. Namely, we will
introduce Split Codings and Factorial Probabilistic Context-
Free Grammars (which are related to L-Systems).

The next section briefly introduces latent variable mod-
els. Sections 4 and 5 introduce the two mentioned codings.
Section 6 gives an example. Section 7 gives a summary and

latent variables

dependencies between
observed variables:

graphical model of

observed variables
(phenotype)

(genotype)

latent variable model:

x5

g1

x1

g2 g3

x2 x5x4

x1

x2

x3

x4 x3

Figure 1: Direct graphical model vs. latent variable models
to represent dependencies between variables.

discussion.

2. LATENT VARIABLE MODELS
The core problem of machine learning is to model data,

e.g., to find a distribution that has high likelihood on the
data. When the data is given in terms of several observable
variables, fitting a graphical model to the data allows us to
directly capture dependencies between them. Often though,
a human would think that the dependencies between observ-
ables have their origin in unobservable processes.

Latent variable models follow this thinking: “latent vari-
ables are entities that we invent to explain patterns in the
observed data” (from David MacKay’s web page). Unfor-
tunately it is true that mostly we, the human, invent these
latent structures and not yet the algorithms themself. But
the approach to fix the latent variable structure ad hoc
and require the algorithm to fit this model to data is very
powerful—a large number of algorithms can be derived in
this way.

An important case is when the latent variables are re-
stricted to be independent because fitting such a model to
data means to understand the data as a superposition of
patterns emitted from independent sources. Blind-source
separation and Independent Component Analysis (ICA) are
examples for this approach, and for the intimate relation-
ship between “analyzing data” and “modeling data with a
specifically structured latent variable model”.

Our goal to find factorial representations for search fits
perfectly in this picture. Observations of previously found
good solutions reveal dependencies between their variables
(phenes). What we try to find are independent latent vari-
ables (genes) that allow us to understand these dependencies
as an effect of underlying hidden causes, while at the same
time providing a representation on which these dependen-
cies vanish and search decomposes. These latent variables
very much play the same role as independent components in
ICA.

Conventionally, the relation between phenotype and geno-
type is captured by a genotype-phenotype mapping φ. At
first this seems a rather large shift in notion: the genotype-
phenotype mapping deterministically associates a pheno-
type to each genotype while a latent variable model could
have any probabilistic relation between them. At second
sight though, this gain in generality is maybe not fundamen-
tal (see also next section). In fact, for the concrete codings
that we develop (Split Coding and Factorial Grammars),
there is a deterministic mapping from genotype to pheno-
type.

1 2

3

1 2

3

x3 =

0 ξ3 < f(x1, x2)
1 otherwise

ξ1

ξ3

ξ2

graphical model (DAG)

P (x3 = 1|x1, x2) = f(x1, x2)

independent variables ξ1,..,n

deterministic dependencies

Figure 2: Any graphical model of n binary variables can
trivially be written as a model with n independent latent
variables ξ1,..,n ∼ [0, 1] and only deterministic dependencies.

3. TRIVIAL FACTORIAL
REPRESENTATIONS

Consider any probability distribution p over discrete vari-
ables. Clearly, one can write an algorithm that produces
samples of this distribution. This algorithm will make use
of a Random Number Generator (RNG). The random num-
bers drawn from the RNG are independent (idealistically
they are continuous and uniform over [0, 1]). These random
numbers are a latent factorial representation of the distribu-
tion and the algorithm represents a deterministic mapping
from the latent variables to the observed ones.

This quite trivial observation is related to the question
whether probabilistic dependencies between latent and ob-
served variables are more general than deterministic: Figure
2 displays a graphical model of a distribution over 3 binary
variables. The relation between all variables is probabilis-
tic. One can though expand the graphical model, adding a
real-valued random number ξ ∼ [0, 1] to each node. Then all
dependencies between variables can be expressed determin-
istically, leaving the independent random numbers as the
only probabilistic components.

These simple remarks give a first insight in factorial repre-
sentations. However, it is questionable whether these kinds
of representations (especially real-valued ones) have a prac-
tical relevance as a basis for genetic search. So we move on
to more intuitive factorial representations for search.

4. SPLIT CODING
First, consider only two coupled binary variables x and y,

P (x, y) = P (x) P (y|x) .

What are possible factorial representations of this distri-
butions? One way to think of this is that y is actually a
combination of two underlying (hidden) variables, namely
y0 ∼ P (y|0) and y1 ∼ P (y|1), see figure 3. The two hid-
den variables y0 and y1 are independent. In the underly-
ing generative process, the three variables x, y0 and y1 are
generated independently (based on their marginals). Then,
depending on the value of x, y is assigned the same value as
y0 or y1. In other terms, in an observed sample (x, y) only
one of y0 and y1 is “expressed”, the other one discarded,
depending on the value of x.

The mapping from the three variables (x, y0, y1) to the ob-
served variables (x, y) can be described in many ways with
expression rules. A simple way is to do it with permuta-
tion rules. Such a rule is a triplet (i, j, k) which means “if

latent variables
(genetic representation)

(phenotype)
observed variables

x

y

y2y1

x

Figure 3: Split Coding for two binary variables x and y.

the ith variable has value 1, permute the jth with the kth
variable”. In our case, the permutation rules simply reads
(1, 2, 3), which means that if x = 1, y0 and y1 are permuted,
leading to (x, y1, y0). After all permutations are done, the fi-
nal result is given by clipping off the extra variables (leading
to (x, y1) for x = 1 and (x, y0) for x = 0).

Consider a tree of n variables x = (x1, .., xn),

P (x) =
Y

i

P (xi|xπ(i)) ,

where π(i) ∈ {1, .., i−1} is the single parent node on which xi

is conditioned. Given such a tree, a factorial representation
is constructed by splitting variables starting with the leafs,
see figure 4. Splitting a variable xj means to introduce a
new variable xk (k = n + 1) with the marginal distribution
P (xk) = P (xj |1) while at the same time xj is made indepen-
dent from xπ(j) by reassigning it the marginal distribution
P (xj) ← P (xj |0). This transformation is kept in memory
by appending the permutation rule (π(j), j, k) to the list of
transformations.

If this is done with all variables in a tree, we will end
up with 2n− 1 independent variables (the root is not split)
and a list of n− 1 permutation rules. Sampling can now be
realized by sampling independent values for all of the 2n−1
variables, applying the permutation rules in inverse order,
and then picking only the first n variables.

4.1 Construction from data
An iterative scheme to construct a Split Coding is to first

find a pair of variables with highest mutual information be-
tween them and then split one of the variables conditioned
on the other one. This procedure will monotonously de-
crease the total mutual information1.

However, the factorial representation constructed in that
way typically introduces more latent variables than neces-
sary because sometimes a variable is split which should,
more efficiently, first be used as a condition of another vari-
able. A more efficient order in which variables can be split
is by a tree—which we call Split-by-Tree Coding :

Consider a population over n binary variables. The pair-
wise statistics for P (xi, xj) and the empirical mutual infor-
mation I(i, j) are calculated for each i and j. Following
[2] we construct a maximum spanning tree, maximizing the
sum of mutual information associated to the edges. From
that tree we construct the representation as explained in the
previous section.

4.2 What does that buy us?
1The worst case data for such kinds of models is the parity
function: Consider a data set comprising all length n binary
strings with positive parity. The mutual information is zero
for any pair of variables, also for any triplet of variables,
and even for any n − 1 tuple of variables. Only the nth
order mutual information is non-zero (the same is true for
the Walsh spectrum and Amari’s θ coordinates).

2

1

3

4 1 32 4 5 6 7

(4,5|2)

(3,6|1)

(2,7|1)

decoding example:

original tree:

1

1

1

1

1

0

01

1

1

1

1

1

0

0

0

0

1

1 0

0 1

1 00 1

100 1

10

extra variables deleted

4,5 not perm. because x2=0

3,6 permuted because x1=1

2,7 permuted because x1=1

factorial representation with
list of conditional permutations:

Figure 4: Split Coding: A tree of 4 binary variables can
be coded in 7 independent variables and a list of conditional
permutation rules.

Modeling data by first constructing a Split-by-Tree Cod-
ing and then fitting a factorial distribution thereon is per-
fectly equivalent to modeling the data directly with a de-
pendency tree. So one may ask: What have we gained?

First, of course, we have what we desired: a way to gen-
erate structured search distributions based on only factorial
random variables (genes).

But there is an interesting point also from the machine
learning perspective: incrementality. When the data is re-
represented using such a coding, one can in principle apply
any other modeling technique thereon. For instance, one
can learn a dependency tree on the Split Coding—or repeat
the Split Coding and learn a factorial model thereon. This
opens new possibilities because if we had directly learned a
dependency tree of the data, it is unclear how we could have
further analyzed the data. In contrast, re-representing the
data seems like removing all the structure from the data that
we have already learned about in a first analysis, leaving all
possibilities to continue with another analysis on that level.

Iterating the Split Coding also allows us to generate higher
order dependencies. E.g., applying Split-by-Tree Coding
twice on three binary variables constructs a representation
on 9 binary variables which captures (if splitting is not done
in an unlucky order) also all 3rd order (parity) interactions.

4.3 Is there another way to do it?
The Split Coding is a highly “redundant” encoding. Rough-

ly speaking, the genome includes multiple partial solutions.
Depending on another variable, either one or the other par-
tial solution is expressed and copied into the phenotype.
This clearly relates to the discussion of introns and the func-
tional role of neutrality.

A legitimate question is whether there are not other, maybe
more efficient ways to recode a solution in the simple tree
case. Going back to the example with only two pheno-
typic variables, it is hard to think of another way to rep-
resent it more efficiently than by the three binary variables
of the Split Coding. Eventually, every conditional proba-
bility P (xi|·) in the direct representation must also be gen-
erated from the latent representation. If we restrict the la-
tent variables to be discrete (and not the continuous random

Σ = {0,1}, N = {A,B}

X1,..,4 ∼ {0,1,A,B} uniformly

sampling expanding
10100

S → AA0
A → B
B → 10

A → X4

X5,6 ∼ {0,1} uniformly

S → X1X2X3

B → X5X6

factorial grammar: L-System: sample:

Figure 5: Example of a Factorial Probabilistic Context-Free Grammar (short: Factorial Grammar). Every RHS symbol
X1, .., X6 is an independent random variable. Sampling a value for each RHS random variable we get an L-System which, by
expression, gives the actual sample sequence.

numbers ξ of section 3) then the marginals of these latent
variables somehow have to mimic the original conditionals.

5. FACTORIAL GRAMMARS
(AND L-SYSTEMS)

Context-free grammars are defined by a start symbol S, a
set Σ of terminal symbols, a set N of non-terminal symbols,
and a set of productions A → α where the left-hand-side
(LHS) A ∈ N and the right-hand-side (RHS) α ∈ (Σ∪N)∗.
A language P is the set of all possible sequences that can be
produced by a grammar. There are (typically) many differ-
ent sequences in a language because there many productions
that have the same LHS non-terminal symbol A and when
producing a sample from the language one has free choice of
choosing any of these productions to replace A with a RHS
sequence.

While grammars define sets of sequences, probabilistic
grammars define a distribution over sequences (see [5] for
a good introduction). They have mainly been studied in the
context of human speech and text models. In probabilistic
grammars, a probability P (A → α) is associated to each
production. For fixed A, P (A → α) is a normalized dis-
tribution and samples are generated from the grammar by
choosing the productions according to this distribution.

The first question we might ask is: Can every distribution
over sequences be represented by a probabilistic context-
free grammar (PCFG)? The obvious answer is yes. In the
extreme case for every possible solution x there exists a sep-
arate production S → x to which an arbitrary probabil-
ity may be assigned. This is one PCFG that produces the
desired distribution over P ; and there are infinitely many
equivalent ones, e.g., it could also be written in Chomsky
normal form.

Going back to our basic question on how to construct fac-
torial representations, there are two ways that PCFG guide.
First, when taking samples from a PCFG, every decision
on a production may be considered as an independent ran-
dom variable. In that way, the factorial representation of a
sample is a sequence of numbers that tell which production
from the set of possible productions is to be taken during the
sampling process. All of these numbers can be drawn inde-
pendently and with marginal distributions equal to the prob-
abilities P (A → α) for fixed A. Unfortunately, we haven’t
made any further considerations or experiments yet with
such representations. They seem interesting though.

A second approach is to consider a special class of PCFGs:
First, since P (A→ α) is normalized for a fixed A, one may
change the notation a bit and write A→ P (α), which means
that a production maps a non-terminal symbol to a distri-
bution over RHS sequences. In that view, a PCFG is equiv-

alently given by a set of unique productions for every A,
which all map to distributions over RHS sequences.

In a general PCFG, the distribution P (α) over the RHS
may be arbitrary. Let us define Factorial Probabilistic Context-
Free Grammars (in short, “Factorial Grammar”) as those
PCFGs where the distributions P (α) are constrained to fac-
torize. In other terms, every RHS α is an arbitrary-length
sequence of independent random variables (which have val-
ues in Σ ∪N). Drawing a sample for each of these random
variables, the Factorial Grammar is turned into a specific
context-free grammar where there is only a single unique
production for every LHS symbol A. Such a grammar de-
fines only a single sample (a language of cardinality 1) and
can also be called L-system (or Lindenmayer-System [10]).
See figure 5 for an illustration.

Now we may ask again: Can every distribution over P
also be represented by a Factorial Grammar? Yes, and again
there is a trivial but structurally not interesting way to con-
struct such a Factorial Grammar. One could for every pos-
sible solution x have a separate non-terminal symbol A and
a production A → x (which is deterministic). Then the
start rule S → X can map the start symbol to a random
variable X, where the probability of X having a value A
is exactly the probability of x we want to represent. Even-
tually, this means to represent every possible solution by
another symbol—which is indeed a factorial representation.

But there is a structurally more interesting way to con-
struct a Factorial Grammar: First consider a tree as a latent
variable graphical model of a set of observable binary vari-
ables (not to confuse with a tree over observable variables).
The observables are the leaf nodes of the tree. Let the latent
variables (non-leaf nodes) have values over a discrete and
disjoint set of symbols. This latent variable model can eas-
ily be represented by a Factorial Grammar. The important
thing to note is that the children of a node are conditionally
independent given the value of the parent node. For in-
stance, when somewhere in the tree three children variables
X2, X3, X4 depend on a parent node X1 and the parent has
values in {A, B} then we may introduce two productions
A → P (X2|X1 = A)P (X3, X1 = A)P (X4|X1 = A) and
B → P (X2|X1 = B)P (X3, X1 = B)P (X4|X1 = B) to the
set of productions of our Factorial Grammar. See figure 6
for an illustration.

On the other hand, every graphical model over binary
variables can be represented by a latent variable tree: One
first has to construct a junction tree from the graphical
model and then take the junctions (not the cliques) as nodes
of the latent variable tree. Here the structural complexity
of the distribution plays the crucial role: if the graphical
model was itself a tree, then it would directly serve as the

231

2

23

4

5 1

2 3 41

1

5

3

15 234

123

graphical model: junction tree: latent variable tree: factorial grammar:

y1 → X1Y23X5

y23 → X2X3X4

S → Y1

Figure 6: Taking the junctions of a (minimal) junction tree as latent variables of a tree representation, one can construct
a Factorial Grammar that produces the same distribution as any graphical model (over discrete variables). The Factorial

Grammar is abbreviated as follows: y1 is a specific value of the latent variable Y1 (which corresponds to the junction 1) and
for each such value there must be a different production rule (with different marginals over the RHS variables). The same is
true for y23 and Y23.

tree. If the graphical model is more complex, then the junc-
tion tree would comprise sets of variables as junctions. The
junctions are the latent variables we were looking for: every
junction is interpreted as a latent variable which emits the
observable variables as leafs, see figure 6.

Intuitively, finding a minimal junction tree for the desired
distribution and constructing the Factorial Grammar from
that might result in a “structurally most concise” way to
represent the distribution by a Factorial Grammar. But we
don’t have any proofs here.

5.1 How does that relate to conventional GAs?
The search mechanisms in standard evolutionary models,

mutation and crossover, are of a factorial nature2. Accord-
ingly, these mechanisms work very well on representations
on which the problem factorizes.

All representations that we constructed in the previous
sections can be used as underlying representations for a
standard GA. For instance, consider the representation we
constructed with the Factorial Grammar. Individuals of a
GA would be instances of such a Factorial Grammar—i.e.,
L-Systems—where each symbol on the RHSs has a concrete
value. The GA’s population as a whole represents the Facto-
rial Grammar in that it gives an (empirical) distribution over
the RHS symbols. Actually, in such a GA, the distribution
over the RHSs is not perfectly factorized (see footnote), but
approximately. In particular, the mutation operator would
induce independent variations of the RHS symbols and the
crossover operator would annihilate linkages between these
symbols. There are many examples for GAs where every
individual represents an L-System (e.g., [7, 8, 15, 6, 3, 11]).
None of them though constructs the grammar based on ex-

2GAs are heuristic search schemes, and as such they can be
understood by investigating what kind of search distribution
they induce depending on previously found good solutions
(the parent population). A traditional GA has independent
symbol alterations as a mutation operator, which induces
a factorized variability distribution σ for each individual.
Considering the whole parent population, a mutation only
GA has a mixture of factorized distributions as search dis-
tribution. Crossover is an operator that makes this search
distribution “more factorized”. Actually, one can under-
stand crossover as a move in distribution space from the
parent population to a more factorized version of the parent
population without changing the gene marginals. One can
show that both, mutation and crossover, can only reduce
the total mutual information that was present in the parent
population [13]. In any case, although GAs do not induce a
perfectly factorized search distribution, its inherent search
mechanisms are of a factorial nature. This is also the rea-
son why they have been modeled as factorial search, e.g., by
PBIL or gene pool GAs.

plicit data analysis; most of them are based on heuristic
adaptations or self-adaptation of the L-Systems.

6. AN EXAMPLE
As an example, we calculate likelihoods of different models

on data taken as follows. We considered a specific MAXSAT
problem of the Satisfiability Library (www.satlib.org), namely
the first of the length 50 Uniform Random-3-SAT problems
(uf50-01.cnf). We generated 10 000 random sequences and
on each one applied a standard Hill Climber that explores
random bit alterations until no alteration leads to an im-
provement. In this way, we ended up with a set of 9974 dif-
ferent “local maxima”. We take this set (associating equal
weights to all of them) as the training data set, and we gen-
erate a second set (of size 9971) in the same way as test
data.

We implemented three probabilistic modeling schemes:

Factorial Estimates the marginals P (xi) for each variable
separately (cf. PBIL [1]); the distribution model is

P (x) =

nY
i=1

P (xi) . (1)

Tree First calculates the mutual information between each
pair of variables; then generates a maximum spanning
tree with random root, maximizing the total mutual
information associated to the edges (cf. COMIT [2]).
The distribution model is

P (x) = P (x0)

nY
i=2

P (xi|xπ(i)) , (2)

where π(i) ∈ {1, .., i−1} is the parent of i and the
indexing of variables is topologically sorted w.r.t. the
tree.

3rd order graphical model First calculates the mutual
information between each triplet of variables (I(i, j, k) =
H(i) + H(j) + H(k) − H(i, j, k)). Then generates a
graph, where each node (except the first two) has ex-
actly two parents. This graph is generated following
the same scheme as for the maximum spanning tree:
At every step, find a variable xk that has not yet been
added to the graph and two nodes xi and xj that have
already been added, which maximize I(i, j, k)−I(i, j);
then add xk to the graph with edges from xi and xj .
The distribution model is

P (x) = P (x0) P (x1|x0)

nY
i=3

P (xi|xπ1(i), xπ2(i)) , (3)

probabilistic model
log-likelihood

on training data
log-likelihood
on test data

tree model -42.0819 -42.2157
3rd order graphical model -38.8017 -38.9608
factorial on direct representation -46.0961 -46.1495
factorial after 1 Split-by-Tree Coding -42.0819 -42.2157
factorial after 2 Split-by-Tree Codings -39.7242 -39.9237

Table 1: The log-likelihood of different models for a distribution derived from a MAXSAT problem. (A uniform distribution
over sequences of length 50 had a log-likelihood of -50; a mixture of 10 000 delta-distributions for each of 10 000 training data
points had a log-likelihood of -13.3 (and -∞ on test data).)

where π1(i) 6= π2(i) ∈ {1, .., i−1} are the two parents
of i (node indexing is topologically sorted w.r.t. the
graph). The root x0 is chosen randomly and the second
node x1 as for the tree building.

We also test the Split-by-Tree Coding by calculating the
likelihood of the factorial model on different levels of re-
representation. In more detail: We calculate the coding from
the data, re-represent the data, model it with the factorial
model, and calculate the likelihood of the data w.r.t. this fac-
torial model on that latent representation. Note that “cal-
culating the data likelihood on the latent representation” is
non-trivial since one has to eliminate over the latent vari-
ables that are not expressed—but with the factorial model
this is straight-forward to do. We iterate this procedure
twice: calculating a new Split Coding of the re-represented
data and fitting a factorial model thereon.

Table 1 displays the results. As a sanity check we find that
the factorial model after 1 Split-by-Tree Coding is equiva-
lent to the tree model. The result of the factorial model
becomes significantly better after another iteration of the
Split Coding. Note that for the 3rd order graphical model,
one has to calculate statistics for

`
n
3

´
triplets of variables

(which dominates the algorithm complexity with O(D n3),
when D is the size of the data set), whereas for the Split-
by-Tree Coding one has to calculate

`
n
2

´
pair statistics in

the 1st iteration, and
`
2n−1

2

´
in the 2nd iteration (which is

O(D n2)).
Constructing an EDA from these ideas is easy; the facto-

rial representation is used only for the purpose of modeling a
distribution. E.g., using the Split-by-Tree Coding and a fac-
torial distribution model thereon, the algorithm is exactly
equivalent a direct EDA with the tree model.

Constructing a GA from these ideas though is not easy. A
straight-forward approach might follow the technique given
in [14]: Given a parent population, construct a factorial rep-
resentation from its statistics, e.g., with the Split-by-Tree
Coding. Then map all parents onto this factorial represen-
tation. Then apply crossover and mutation on this repre-
sentation to generate an offspring. Then map this offspring
back on the problem representation and evaluate.

An interesting problem though arises when mapping the
parents to the factorial representation. In [14], the com-
pressed representation of a parent was uniquely defined once
the compression map was fixed. But in the Split Coding,
there are many genotypic representations that map to the
same phenotype. In the sketched algorithm it is quite un-
clear which genetic representation to choose for a given par-
ent. In preliminary experiments with the Split-by-Tree Cod-
ing, we sampled the undetermined genetic variables (one
might call them neural genes or introns) from its distribu-

tion in those parents where it was determined (which is a bit
like an E-step, inferring non-observed variables). However,
we found only statistically non-significant improvements of
such a GA (with standard mutation and uniform crossover)
on a length 100 MAXSAT problem when compared to a
direct representation GA.

In fact, it seems inefficient that in every generation an
individual first looses all information about its latent ge-
netic variables when it is mapped on the problem repre-
sentation, and then, when it is mapped back on a factorial
representation, heuristics have to reassign values to the un-
determined genetic variables. If the mapping (the set of
conditional permutation rules) were non-adaptive, the val-
ues of the latent variables could of course be memorized for
each individual (be part of the genotype for a fixed genotype-
phenotype mapping). But when the mapping is recalculated
(or adapted) in every generation, it is unclear how to pre-
serve such information.

The most natural solution to such problems is the self-
adaptive evolution of genetic representations ([11] gives an
example for L-Systems), where the description of an indi-
vidual includes all latent variables as well as how they have
to be expressed. But this does not accord with our aim
to explicitly construct a factorial representation from the
statistics of previously evaluated samples. Future research
will have to address these issues.

7. DISCUSSION
Let us summarize the factorial representations we ad-

dressed in this paper:

(1) First, for any distribution, if we have an algorithm pro-
ducing samples of the distribution, we can consider the ran-
dom numbers of the algorithm’s RNG as a factorial repre-
sentation. But it is questionable whether this representation
is promising for search.

(2) Every distribution can be represented by a Probabilis-
tic Context-Free Grammar. Related to (1), we can consider
the sequence of decisions made when sampling from such a
grammar as a factorial representation. This seems interest-
ing to consider as a basis for search, but the implications
are yet really unclear.

(3) Every distribution can also be represented by a Facto-
rial Grammar, where the symbols on each RHS of a produc-
tion are independent variables. This is a very plausible and
common representation for genetic search—an L-System is
a sample from a Factorial Grammar and there exist many
GAs based on L-Systems.

(4) For distributions that can be modeled by a dependency

tree we can efficiently construct a Split Coding as a fac-
torial representation. For arbitrary distributions, iterating
the Split Coding ensures that the mutual information can
only decrease (we did not prove convergence to a perfect
factorial representation). The Split Coding seems to be a
practical approach to handle interactions between arbitrary,
non-contiguous variables.

(5) At another place [14] we have shown how compact ge-
netic codes are related to factorial representations.

From a pure machine learning perspective, a potential
benefit of modeling distributions by re-representation of the
data is that it allows us to apply any additional analysis
technique on that representation. An example is the iterated
Split-by-Tree Coding, which is computationally cheaper than
a direct 3rd oder analysis. Maybe we also contributed a bit
to the question of how latent variables that explain patterns
in observed data can be discovered automatically instead of
being invented by humans.

Finally, we think there are also implications from a bio-
logical perspective. We showed at another place [12] that
a standard evolutionary process induces an implicit selec-
tion pressure on genetic representations—favoring represen-
tations that generate a phenotypic variability that fits with
the Boltzmann fitness distribution. Here we showed that
factorial genetic representations are sufficient to generate
any desired distribution. Although we would not claim that
natural genetic systems are, e.g., comparable to a Facto-
rial Grammar, we do claim that the mechanisms involved
in natural genetic systems are at least as rich as those of
a Factorial Grammar. A tempting conclusion is that genes
are factorial latent variables invented by nature to generate
arbitrary search distributions.

Acknowledgment
The author would like to thank Chris Williams for helpful
discussions on the topic of latent variable models, and the
German Research Foundation (DFG) for their funding of
the Emmy Noether fellowship TO 409/1-1, allowing me to
pursue this research.

References
[1] S. Baluja. Population-based incremental learning: A

method for integrating genetic search based function
optimization and competitive learning. Technical
Report CMU-CS-94-163, Comp. Sci. Dep., Carnegie
Mellon U., 1994.

[2] S. Baluja and S. Davies. Using optimal
dependency-trees for combinatorial optimization:
Learning the structure of the search space. In Proc. of
Fourteenth Int. Conf. on Machine Learning (ICML
1997), pages 30–38, 1997.

[3] E. D. de Jong. Representation development from
Pareto-Coevolution. In Genetic and Evolutionary
Computation Conference (GECCO 2003), 2003.

[4] E. D. de Jong, R. A. Watson, and D. Thierens. On the
complexity of hierarchical problem solving. In Genetic
and Evolutionary Computation Conference (GECCO
2005), 2005.

[5] S. Geman and M. Johnson. Probabilistic grammars
and their applications. DRAFT of October 24, 2000;
available at

http://www.ima.umn.edu/talks/workshops/10-30-11-
3.2000/johnson/grammars.pdf.

[6] G. S. Hornby. Generative representations for
evolutionary design automation, 2003. Ph.D.
Dissertation, Brandeis University Dept. of Computer
Science.

[7] G. S. Hornby and J. B. Pollack. The advantages of
generative grammatical encodings for physical design.
In Proc. of 2001 Congress on Evolutionary
Computation (CEC 2001), pages 600–607. IEEE
Press, 2001.

[8] G. S. Hornby and J. B. Pollack. Evolving L-systems to
generate virtual creatures. Computers and Graphics,
25:1041–1048, 2001.

[9] M. Pelikan, D. E. Goldberg, and F. Lobo. A survey of
optimization by building and using probabilistic
models. Technical Report IlliGAL-99018, Illinois
Genetic Algorithms Laboratory, 1999.

[10] P. Prusinkiewicz and J. Hanan. Lindenmayer Systems,
Fractals, and Plants, volume 79 of Lecture Notes in
Biomathematics. Springer, New York, 1989.

[11] M. Toussaint. Demonstrating the evolution of complex
genetic representations: An evolution of artificial
plants. In Genetic and Evolutionary Computation
Conference (GECCO 2003), pages 86–97, 2003.

[12] M. Toussaint. On the evolution of phenotypic
exploration distributions. In C. Cotta, K. De Jong,
R. Poli, and J. Rowe, editors, Foundations of Genetic
Algorithms 7 (FOGA VII), pages 169–182. Morgan
Kaufmann, 2003.

[13] M. Toussaint. The structure of evolutionary
exploration: On crossover, buildings blocks, and
Estimation-Of-Distribution algorithms. In Genetic and
Evolutionary Computation Conference (GECCO
2003), pages 1444–1456, 2003.

[14] M. Toussaint. Compact genetic codes as a search
strategy of evolutionary processes. In Foundations of
Genetic Algorithms 8 (FOGA VIII), LNCS. Springer,
2005.

[15] R. Watson and J. Pollack. A computational model of
symbiotic composition in evolutionary transitions.
Biosystems, Special Issue on Evolvability, 69:187–209,
2002.

