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Abstract In this paper, we reduce the above mentioned drawbacks
just by exploiting the local Lucas-Kanade constraint con-
The basic idea of Lucas and Kanade is to constrain the sistently but without introducing further global smootkse
local motion measurement by assuming a constant velocityconstraints. The main assumption of Lucas and Kanade is
within a spatial neighborhood. We reformulate this spa- that a number of pixels within a neighborhood move with
tial constraint in a probabilistic way assuming Gaussian the same velocity. This implies that the movement of every
distributed uncertainty in spatial identification of veigc single pixel is influenced by the movement of its neighbor-
measurements and extend this idea to scale and time diing pixels. So one could argue that the movement of an
mensions. Thus, we are able to combine uncertain velocityobserved pixel is equated with the movement of an image
measurements observed at different image scales and posipatch centered around this pixel. Since this is not true, one
tions over time. We arrive at a new recurrent optical flow could follow a slightly differentimplication and assumeath
filter formulated in a Dynamic Bayesian Network applying the position of a pixel is uncertain and so its velocity can
suitable factorisation assumptions and approximate infer only be inferred by taking the neighborhood into account.
ence techniques. The introduction of spatial uncertaity a Either way, the question arises what is an appropriate size
lows for a dynamic and spatially adaptive tuning of the con- of the neighborhood and which neighboring position influ-
straining neighborhood. Here, we realize this tuning depen ences the pixel velocity how strongly?
dent on the local Structure Tensor of the intensity patterns  Usually, the neighborhood is weighted with a Gaussian
of the image sequence. We demonstrate that a probabilisticassuming a less likely contribution to the velocity esti-
combination of spatiotemporal integration and modulation mate of the center pixel for larger distances to the center
of a purely local integration area improves the Lucas and [2]. More elaborate approaches adapt the neighboring in-
Kanade estimation. fluence by taking the underlying structure into account [4],
[6] which improves the optical flow accuracy, especially at
motion boundaries.
1. Introduction Keeping in mind the above mentioned considerations we
start with a probabilistic interpretation of the Lucas-lide
The local and linear differential method of Lucas and approach inspired by the work of Simonceitial. [12]. We
Kanade [9] is one of the most popular approaches for opti- propose aenerative modehat allows to infer the velocity
cal flow computation. Compared to global smoothness con-of every pixel from the movement of image patches. Every
straints used for example by Horn and Schunk [8], their lo- pixel within the patch is assigned a different uncertaioty t
cal explicit method is more accurate and more robust with be able to adaptively adjust the neighborhood influence on
respect to errors in gradient measurements [2]. Neverthethe velocity estimate. This leads to an observation likeli-
less, the local approach suffers from the aperture problemhood for optical flow estimation described in section 2.1.
and the linearisation of the underlying constancy assump- Anotherimportant aspect of motion estimation is the fact
tion for image intensity. Lucas’ and Kanade's basic idea to that motion is a dynamic feature of an image sequence.
assume that the optical flow field is spatially constant withi Thus, the longer the spatiotemporal process is observed the
some neighborhood is in many cases not enough to resolvenore precisely we can estimate and predict the motion con-
motion ambiguities and does in particular not hold at motion tained in an image sequence. This has motivated several
boundaries. Further on, the linearised intensity constanc approaches [13], [3], [7] to recursively estimate the opti-
assumption is suitable only for small displacements. cal flow over time including a prediction model that defines



some temporal relation between pixel movements. Along
this line of argumentation, it seems straightforward tmals
include a local constraint on the pixel movements within
some neighborhood in time.

Here, we realize this idea and extend the Lucas-Kanade
constraint to the time dimension. More precisely, we as-
sume that the pixel velocities within a spatiotemporal heig
borhood remain constant. This constraint is included via a
temporal transition that consists of factors which are depe
dent on neighboring positions. The influence of these neigh-
boring positions is again allowed to be spatiotemporally
adaptive. In the same way, we account for the limitations of
the linear differential method and incorporate a probatidi
coarse-to-fine strategy inspired by [11]. Our method prop-
agates motion information over scales via a scale-tramsiti
consisting of factors which are adaptively dependent on the
movement of pixels from neighboring scales (for details see
section 2.2). Combining both transitions we obtain a new
recurrentscale-time filte(STF) for optical flow estimation
that incorporates the idea of the local Lucas-Kanade con-
straint to both dimensions, scale and time. This is formu-
lated in a Dynamic Bayesian Network (DBN) and described
in section 2.3.

To enhance optical flow performance at motion disconti-
nuities, we allow for adaptation of the neighborhood uncer-
tainty dependent on structural information. This is redate temporal derivativeE* € RX"*! with entriesl/% € R1*!

to discontinuity preserving anisotropic diffusion appztbes  at each pixel locatiox € N** of the image at a particular
[4]. Here, the adaptation of the neighborhood influence is time ¢ and scalés. In the following, the gradient field is as-
realized with adaptive Gaussian kernels whereas the oriensymed to be deterministic. Furthermore, we define a scalar

tation and the sharpness of the Gaussians are gained frormg|q patch of temporal derivatives centered arounds
the structural information provided by the local Structure ¢« c RX"x1 (which should not be confused wifl§".) and

Tensor of the underlying intensity pattern correspondingt > .
the neighborhood (s?a/e gection 3;l P P 9t 4 gradient field patch centered aroundsVItF € R2xX"
. . . . k . .

In section 4 we compare different types of realizations Similarly, the hidden stat®¥** € R*** " is a flow field at
of the proposed STF with state-of-the-art algorithms that time slicet a?kd scaQIEQI defined over the image rangé
achieve highest accuracy in optical flow computation, like With entriesv.” € R**" at each pixel locatiox of the im-
the CLG approach [5], to shortly discuss the advantages of29€-

tk
2l,x

scalek filtering

Figure 1. Dynamic Bayesian Network for re-
current motion estimation realizing a scale-
time filter (STF) that simultaneously propa-
gates beliefs along scales k and time ¢.

recurrent filtering techniques in contrast to variational a ~ The probabilistic generative model is precisely defined
proaches that do not propagate motion information via pre-Py the specification of thebservation likelihoodor the
dictive models. image derivatey'** formulated in (1) and théransition

probability for the flow field V¥'¥" at the new timestep/
at finer scale:’ specified in (2) given the flow fielW*'* at
the same time’ but coarser scalk and the flow fieldvV*’
from last timet but at the same scalé.
For the observation likelihood and the flow field transi-
&ion probability we assume that they factorise over the im-
age as follows

2 Probabilistic Recurrent Filter

To describe the filtering process a DBN as depicted in
Fig. 1 is proposed. We assume a generative model for th
observable¥ ** of an image sequendé ™ X with T im-
ages at equidistant points in timeat K spatial resolution

S ;- ! X
scaless witht' = ¢ + landt' =k +1 Ipelng the next time P(Y““ |V““) _ Hg(vfck) ’ (1)
step and the next finer scale, respectively.

Here, the observab® ' = (VI'* I'*) e R3*X" s otk <otk - T <t
defined over the image rangé* of the particular scalé PVIEIVIEVE) = HQSK(VX V)X
and comprises the gradient fieWdl** € R2*X" with en- * T
tries VIIF = (1'% 1t)T e R?*! and the scalar field of ¢(vi" V). (@)



Equation (2) explicitly expresses that the conditionalelep 2.2  Flow field transition probability

denceP(vi* | v’k V') can be splitin two pairwise po-

tentials¢, ¢., as explained in detail in section 2.2. This  The flow field transition probability defined by equation
will allow us to maintain only factored beliefs during infer  (2) consists of two pairwise potentials. The first potential
ence, which makes the approach computationally practica-¢, (v *', Vi*') assumes that the flow field at every spatial

ble. scalek transforms from¢ — t' according to itself. The
second potentiab, (v ¥, V¥'*) realizes a refinement from
2.1 Observation likelihood coarser to finer scalle — k' at every time’ via interpola-
tion of the coarser flow'*.
We follow a similar argumentation as Simoncadti al. To motivate the first transition factor we assume that the

[12] to obtain the?(vi¥)-factors (1) of the observation like-  origin of alocal flow vectov’,*" at positionx at timet’ was
lihood. However, our likelihood results from a generative a prewous flow vectov“? at some corresponding position
model assuming that a scalar field patch of temporal deriva-x’ at timet,

tivesI?% e RX"*1 centered arouns is generated by the
velocity vi¥ € R2*! at positionx and the gradient field
patch(VI*)T e RX"*2 centered around the same posi-
tion x.

While introducing this model based gatchesaround
positionx instead of only thepixel at positionx itself we
imply that the optical flow is locally constant in a sense sim-
ilar to the Lucas-Kanade constraint [9]. Additionally, we
assume i.i.d. additive Gaussian naisgS, on the temporal X'~ fo(x x — Vik’) = N(x'|x — V gtk ). (D)
derivatives and the flow field, respectively.

~ NVEF VI o)), (6)

which says that the change in time of the flow field is white
with undirectional transition noise betwe®H* andV*'*",
Now, asking what the corresponding positinin the pre-
vious image was, we assume that we can infer it from the
flow field itself as follows

" " Ttk <tk In principle f, can be any arbitrary function. Here, we de-
L(vy) = N(=L5 (VL) vy 20%) (3)  fineitas an inhomogeneous anisotropic Gaussian to be able
to steer the orientation and to adapt the strength of the un-

0 certainty in spatial |dent|f|cat|oEtk between correspond-
szx = Coogtk , 4) ing positions in time (see section 3 for details). Note that
fxex here we usevfc’C to retrieve the previous corresponding
0 e pointx’ which is a suitable approximation keeping in mind
" (VI)TS, VIt 4 s, that we have assumed directly beforehafd” ~ vZ’ in
T = T L) (5)  (6). Combining both factors (6) and (7) and integratitig

we get the first pairwise potential
In notation (3), the patches can be regarded as vectors and

the covariance matrif ", is a diagonal with entries(”, , b, (VEF VI Z/\/’ x — vEF B ) x
that depend on the posmod relative to the centex, the
time ¢, the scalek, the flow field covarianc&, and the N(Vx |Vx/ o)), (8)

variance on the temporal derivatives Here, f, takes
into account the spatial uncertainty of the velocity mea- that imposes a spatial coherence constraint on the flow field
surement and can implement any kind of spatial weight- combined with a linear stochastic drift. Equivalent to (6)
ing, such as a binomial blurring filter proposed in [11] for the second transition factor we assume that the origin
or an anisotropic and inhomogenous Gaussian weightingof a local flow vectorvfc/’“/ at positionx at finer scalek’
fo=N(|x, Zf’fx) which we investigate in section 3. corresponds to a flow vectm‘;,’? from coarser scalé at

In contrast to [11], we introduced tinteas an additional ~ some corresponding positiet?,
dimension and derived a more compact notation by putting
the spatial weighted averaging directly into the likelidoo ~ N (v |Vx” N (9)
formulation defining multivariate Gaussian distributidos
vectors that describe image patches centered around imag@ssuming white transition noisg,. Since it is uncertain
locations. Allowing for uncertaintiex!*_that are adaptive ~how strong a positiox” at coarser scalé influences the
in locationx, scalek and timet we are able to tune the Velocity estimate at positior at finer scalés’, we assume
local motion measurements dynamically dependent on thethat we can infer it from the neighborhood similar to (7)

underlying structure of the intensity patterns as explhine
section 3. X"~ fo(x'x) = N"x,B,) . (10)



For the same reasons as mentioned for the temporal transiall the dataY "%, Nevertheless, future implementations
tion factor (8) we choosg; to be also an adaptive Gaussian will need to evaluate whether propagating also back will
kernel. Again, combining both factors (9) and (10) and in- improve the accuracy significantly.

tegratingx” we get the second pairwise potential More precisely, the factored observation likelihood and
the transition probability we introduced in (1) and (2) eresu
G (VIR VIR = 3 N (X%, B ) % that the forward propagated joint belief
j\/(vik/|vi}f,(jk) ’ (11) P(Vt,lzK|Y1:t,1:K) _ HP(V§1:K|Y1:t"1:K) (12)

that IMPOSES a spatla! smopthness constramt on th? flowgyill remain factored. In addition, we assume the belief over
field via adaptive spatial welghtlng of motion estlmgtlons V't and V¥’ at time+ to be factored which implies that
from coarser sca}le. The comblnatlon_qf both pot(_an'uals (8) also the belief oveV*t'* andV** factorizes.
and (11) results in the complete conditional flow field tran-
sition probability as given in (2). P(VUE VI |y IR oyt Ry =

We impose adaptive spatial constraints on every factor of kot 1ok oLt Lk
theV -transition. The transition factors (8) and (11) allow us =P(VEE Y POV [ YR (13)
to unroll two different kinds of spatial constraints along the - H a(vik)a(vik’) ,
temporal and the scale axes while adapting the uncertain- x
ties for scale and time transition differently. This is done ) ]
by splitting not only the transition in two pairwise poten- Where we useds as the notation for forward filtered be-
tials, one for the temporal- and one for the scale-transitio l€fs and\ for excludingY* * from the set of measure-
but also every potential in itself in two factors, one for the r_nentsY“ . The STF forward filter can now be de-
transition noise and the other one for an additional spatial fined by the computation of updated beliefs as the product
constraint. In this way, the coupling of the potentials (8) ©f incoming messages,
and (11) realizes a combination of (A) scale-time predictio

tk tk tk tk

and (B) an integration of motion information neighboring in a(vy?) o my o (Vi) M (Vi) mi—i (Vi) 5 (14)
time, in space and in scale. with
2.3 Approximate Inference Moo (V) = [ 6, (vEF VI o (VI )V

To gain a recurrent optical flow filtering we propose v v R
an approximate inference based on belief propagation [15] =Y NEHFx-xZk)x  (15)
with factored Gaussian belief representations. The struc- x
ture of the graphical model in Fig. 1 is similar to a Markov / N(Vt’k’ |Vtk’ o )a(vt@’)dvt@'
Random field. To derive a forward filter suitable for on- * o * 7
line applications we propose the following message passing vy

scheme. Let us assume, we isolate one time slice atitime
and neglect all past and future beliefs, then we would have
to propagate the messages_.;, (see Fig. 1) from coarse Mp—p (VEF) = / b (VA VIR (VIR gV E
to fine and the messages.. ., from fine to coarse to com-

. . : Vit'k
pute a posterior belief over the scale Markov chain. The Y o
two-dimensional scale-time filte5{TFH combines this with = Z N (=[x, 275) x (16)
forward passing of temporal messages., and the com- X"
put?tion of the likelihood messages ., = £(v:* ) atall / N(Vik/ |vf(',’f, O'K)O[(Vi” )dvi/l/c .
scalesk.
As a simplification we restrict ourselves to propagating Vit

messages only in one directién— &’ and neglect passing
back the message; .. The consequence of this is that
not all theV-nodes at time have seen all the dadg! &

but only all past data up to the current scxé*!:*. This
increases computational efficiency and is a suitable approx
imation since we are only interested in the flow field on ke th <th
the finest scal&/t:X which is now the only node that sees i~ N (v [y, 250 17)

For reasons of computational complexity we introduce a last
approximative restriction. We want every factor of the pos-
terior probability (14) to be Gaussian distributed

(V) o my o (V) My (VE) M (Vi)



We fulfill this constraint by making all single messages
Gaussian distributéd This already holds for the observa-
tion likelihoodmy ., (v k). Inserting Gaussian distributed
beliefsa into the propagat|0n equations (15, 16) leads to
two differentMixture of GaussiangMoG's) for the result-
ing messages

e () = SR MO B
~ N(vx |wEE QU | (18)
with
i = N = |l 3 (19)
ﬂ;/k = (G + Z:x/ )Ax/ (X —X ) Etk Ax/ iu’x’ ) (20)
B = stk A% (0, + 28 (21)
, -1
sk [A } =0 + 3% + =t
and
mk_,k/ Zp;/]f N x// 5 _i/]f )
~ NVEF |l Ty (22)
with
;—9;’,’?/ = N(x"]x, Ez]fx) , Eif =0 + Et (23)

In order to satisfy the Gaussian constraint formulated in

(17) the MoG’s are collapsed into single Gaussians (18,

22) again. This is derived by minimizing the Kullback-

Leibler Divergence between the given MoG's and the as-

sumed Gaussians for the mean¥’, 7'* and the covari-
ances* TI'* which results in closed-form solutions for
these parameters. The finakdictive beliefa(viF) follows
from the product of these Gaussians

a(vih) =(v") N (VI 25!“) : (24)
SRS T G Qi (25)
itk —qtk [Htk Q;k} _17‘,;1@_’_

m o] e (2e)

By applying the approximation steps (17, 18) and (22) we

for Kalman-filter like update equations since the observa-
tion is defined to factorize into Gaussian factors (3). The
final recurrent motion estimation is given by

a(vie) = N(vid | i, 25) (27)
:N(_Itk (VItk)T tkvzz]fx)x
N( tk| otk ztk) (28)
~ -1
= [AL+ VERAL(VERT] L (29)
plt = pif — SEVIEAL T (30)

For reasons explained in [11] the innovations process is ap-
proximated as the following

I'" ~0/0tT (I, piF) | (31)
with 7" applying a backward warp plus bilinear interpola-
tion on the imagd?’* using the predicted velocitieg%*
from (26). What we gain is a general probabilistic scale-
time filter (STF) which is, in comparison to existent filtegin
approaches [7], [11], [13], not a Kalman Filter realization
but a Dynamic Bayesian Network. If we have access to a
batch of data (or a recent window of data) and do not focus
on online-oriented pure forward filtering we can compute
smoothed posteriorg(vF) := P(viF|Y1T:1:F), There-
fore, we follow a Two-Filter realization for optical flow
smoothing as proposed in [14].

3 Adaptivity Information

Now that we have set up probabilistic filtering equations
(30, 29) for recurrent optical flow computation that con-
strain the estimation based on the extended Lucas-Kanade
assumption that the movement within a multidimensional
(x, k, t) neighborhood is constant, we continue to spec-
ify the neighborhood relations. As defined in section 2 we
want the integration of neighboring velocity estimates to
be adaptable in scale, time ¢ and locationx. Therefore,
the corresponding covariancB$”,, =% 5% of the dif-
ferent Gaussian kernels are adapted dependent on the local
structural information of the underlying intensity patshe
I** within the neighborhood.

We assume that neighbors along the orientation of the lo-
cal structure are more likely to influence the velocity of the
center pixel than neighbors that are located beside the ori-
entation. For this reason, we increase the spatial unogrtai

guarantee the posterior (14) to be Gaussian which a||owsf0r the location of the center piXE' along the orientation of

1A more accurate technique (following assumed density ifiggr
would be to first compute the new beliefexactly as a MoGs and then col-
lapse it to a single Gaussian. However, this would mean egsts. Future
research will need to investigate the tradeoff between catatipnal cost
and accuracy for different collapsing methods.

the structure by increasing the uncertainty of the covagan
matricess%,, B¢k, 5% _aligned with the orientation. On

the other hand, we reduce the spatial uncertainty orthogo-
nal to the orientation to strengthen the assumption that we

are more certain that the position of the pixel is somewhere



b) Grove ¢) Yosemite

along (as compared to orthogonally to) the structural con-
tour. To obtain the orientatiof of the local structure we
use the local Structure TensH‘* averaged with a Gaus-
sianG;

(32)

H* — G, *< LIORIN i i >

Iik I:k (Izk )2

perform an eigendecomposition for evedd’ and
get the eigenvalueshi, X} ~and the eigenvectors
(cos 1k cos 01F)T for every scale

ik sin 02F)T, (— sin 91F

X

k, timet and positionx. Similar to an edge enhancing dif-
fusion tensoM!* [4] we calculate oriented covariances as

follows STF - &i»
,qa I
: NS AR e
zi,kx = chk = f(ef(ka g()‘il,cx)a ’{i,Q) ) (33) 9 “q B e ‘ﬁ'ﬁ,u

AR Y — Ri 2 7
g( 1,x) 1+(/\§]€ /’%,1)4

X

e {l,k,t}. (34 _ I .
Peibik . (34 Figure 2. Qualitative comparison between

ground truth (GT) and the STF method for dif-
This leads to covariance matrices aligned with the under-  ferent benchmark sequences (Im) a) Army b)
lying intensity structure and prefers to group velocity in- Grove and c) Yosemite from the Middlebury
formation alongnotion contoursind not acrosmotion dis- database.
continuitiesbecause in most cases it is true that motion con-
tours overlap with intensity contours.

Sec. 3 which allows to keep the motion discontinuities pro-
nounced. Other methods like the Black and Anandan ap-
proach [3] that introduce robust statistics to reduce the er
We present some performance results based on the Midyors at motion boundaries because of motion outliers seem
dlebury benchmark for optical flow evaluation [1] to argue g pe less effective. Nevertheless, in untextured regioes t
the applicability of our probabilistic scale-time filter BTn - ¢|.G method that includes the global optical flow constraint
all the experiments the parameters are chosenZix&te of Horn and Schunk [8] gets better results with an AAE
uncertainty on the flow field, is chosen to be a diago-  of 1.46° compared td.53° using STF which has no addi-
nal matrix with entriess,. The kernel sizes for the spa- tjonal global constraint in the observation likelihood mea
tial derivatives are chosen to bex 5 and for the temporal  syrement. The explanation for that is as follows: The STF
derivative3 x 3 with filter coefficients as proposed in [10]. method is a probabilistic recurrent filter that takes inte ac
The Size Of the adaptive Spatial Gaussian fi|terS iS Choserbount neighboring measurements for optica' flow predic-
(2F +1) x (2 +1), dependent on the scateand the Gaus-  tjons to the next time frame. Therefore, it realizes a filing

4 Evaluation

sian smoothing kernel of the Structure Ten€hrhas a di-  in process over time via a predictive prior but without a fur-

agonal covariance matrix with standard deviatior2éfat  ther global smoothness constraint on the measurement. The

a kernel size 06 x 5. more data with constant image flow is processed over time
In table 1 we report some error statistics for heud-  the larger is theropagation rangento untextured regions.

less Yosemiteequence (see Fig. 2) using the same error Thys, for a small number of filter steps, such an incorpora-
measures as proposed by [1]. As can be seen, we are ablgon of local smoothness propagating along image location
to keep up with the accuracy of recent optical flow meth- iy time seems to be less effective than a direct incorparatio
ods. The overall performance (see also Fig. 3 a)) of STFike obtained via the Horn and Schunk constraint.
with an average angular error (AAE) 0f52° outperforms Another interesting result is shown in Fig. 4. Here, the
high accuracy optical flow techniques, like the popular CLG performance for different graduations of the STF filter is
method of Bruhn et al. [5]. Looking at the performance gnhown, (A) and (B) are the time lapses for a belief propaga-
only at the motion discontinuities shown in Fig. 3 b) the jon filter only along scalevhich neglects the temporal mes-
AAE is with 3.07¢ still quite low. This argues for the spa-  gagegn, .. In case (A) the spatial filters are not adapted
tiotemporal adaptation of the uncertainties as described i \ypich is equivalent tos; ; — oo and in case (B) they are
Zhpq = 105, mgy =210, ko q = 2102, kg = 2.25, fg o = adapted like explained in Sec. 3. In case (C) the forward fil-
1.5,k 2 = 60,00 = 0.1,0, = 107125, =5, = 1073 . ter results are shown without uncertainty adaptation to the




angular
error all

angular
error disc

frame

angular
number

error untext

technique
Lucas & Kanade 2 6.41° | 7.02° 10.8°

LP Registration 2 4.51° | 5.48° 3.95°
Horn & Schunk 2 4.01° | 5.41° 1.95°
Dynamic MRF 2 3.63° | 5.29° 4.62°
Black & Anandan 2 2.61° | 4.44° 2.15°
2DCLG 2 1.76° | 3.14° 1.46° Figure 3. The white color marks a) all the
STF 8 1.52° | 3.07° 1.53°

pixels b) only the discontinuities (disc) or c)
only the untextured (untext) regions which

Table 1. Results of state-of-the-art methods are chosen for the results given in table 1.
for the cloudless Yosemitgequence and our re-

sults for a batch of 8 frames applying adaptive

Two-Filter inference STF with 6 filter steps in 45
time ¢t and 3 along scale k.

local structure and in (D) the forward filter results with un- 35}
certainty adaptation can be seen. Both, the local adaptatio

and the spatiotemporal prediction i _.;, improves the 3l
performance.

Figure 5 clarifies that motion estimation is refined as
more data is aquired while propagating beliefs over scale as
well as forward (A) and backward (B) in time. Of course,
the best results are gained if future as well as past dats 2
is taken into account to estimate the flow at current time,
like in the two-filter approach (C). Taking a closer look at
the time lapse of the AAE for the adaptive purely scale-  Figure 4. Time lapse of the average angular er-
propagation filter (see Fig. 4 (B)) compared to the time  ror for (A) the nonadaptive STF method over
lapse of the AAE for the adaptive two-filter (see Fig. 5 (C)) scale (B) the STF method over scale (C) the
it turns out that thenean and the standard deviaticid nonadaptive STF method and (D) the com-
of the AAE for all frames are higher for the time-isolated plete adaptive forward STF method.
scale filtermean = 3.64, std = 0.29 compared to the
time-dependent two-filtemean = 2.18, std = 0.25. This

means, beside quite large variations of the AAE over time keeps being very accurate at motion discontinuities.
because of changing errors at motion boundaries reflectedrna main advantage of the STF method lies in the online

in changing obs_ervation likelihood meas_urements our STFappIicabiIity and the adaptation to movement changes sim-
reduces the variance of the AAE over time. Such kind of ilar to object tracking approaches. In particular, the STF

improvement is not possible for methods that are based Ofjye reaises a probabilistic tracking of the whole denge o
anisolatedbatch of images which do not allow for estima- .4 flow field.

tion changes because of new arriving evidence.

2.5¢
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