
Chapter 1
Whole-body Motion Planning – Building Blocks
for Intelligent Systems

M. Gienger, M. Toussaint and C. Goerick

Abstract Humanoid robots have become increasingly sophisticated, both in terms
of their movement as well as their sensorial capabilities. This allows one to target
for more challenging problems, eventually leading to robotic systems that can per-
form useful tasks in everyday environments. In this paper, we review some elements
we consider to be important for a movement control and planning architecture. We
�rst explain the whole-body control concept, which is the underlying basis for the
subsequent elements. We then present a method to determine optimal stance lo-
cations with respect to a given task. This is a key element in an action selection
scheme that evaluates a set of controllers within a parallelprediction architecture.
It allows the robot to quickly react to changing environments. We then review a
more global movement planning approach which casts the overall robot movement
into an integral optimization problem, and leads to smooth and collision-free move-
ments within interaction time. This scheme is then extendedto cover the problem of
grasping simple objects.

1.1 Introduction

While in its beginning, humanoid robotics research focused on individual aspects
like walking, current systems have become increasingly sophisticated. Many hu-
manoid robots are already equipped with full-body control concepts and advanced
sensorial capabilities like stereo vision, auditory and tactile sensor systems. This is
the prerequisite to tackle complex problems, such as walking and grasping in dy-
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namically changing environments. Motion planning seems tobe a promising way
to deal with this class of problem. State of the art planning methods allow one to
�exibly account for different criteria to be satis�ed. Further, many computationally
ef�cient methods have been proposed (see [38–40] for a comprehensive overview),
so that fast planning and replanning can be achieved in real-world, real-time prob-
lems.

In general, two problem �elds in humanoid robot motion planning have emerged.
One recent research focus is centered around solving the gait [9, 27] and footstep
planning problem in dynamic environments [12, 45]. This is complemented by ef-
forts to plan collision-free arm movements for reaching andgrasping [4,41], and to
incorporate the dynamics of the objects to be manipulated [63].

However, there seems to be no approach to address all problemdomains within
a consistent architecture. In this article, we will presentsome steps in this direction.
We start out with the whole-body control concept applied to our humanoid robot
ASIMO in Section 1.2. We will explain the underlying robot model and derive the
kinematics for the task and null space control. Based on the proposed model, we
present a method to ef�ciently estimate an optimal stance location in Section 1.3.
Reactive prediction and action selection is added with an architecture described in
Section 1.4. It compares a set of different controller instances and selects the most
suitable one according to their prediction result. However, this scheme has a limited
time horizon. To generate movements that satisfy criteria throughout the whole tra-
jectory, we present a controller-based optimization scheme in Section 1.5 in which
we determine the attractor points describing the trajectory. The elements share a
common basis, the whole-body control concept. The contribution �nishes with the
concept oftask mapsin Section 1.6. The fundamental idea is that there exists a
space of feasible solutions for grasp problems that can be represented in a map. We
will show how to generate and seamlessly integrate such mapsinto movement opti-
mization, addressing the coupled problem of reaching and grasping in an integrated
framework.

1.2 Models for Movement Control and Planning

While many movement planning approaches deal with navigation problems, this
work will focus mainly on the problem of reaching and grasping with humanoid
robots. Comprehensive kinematic models are particularly suited to describe the
robot's end effector movement in an ef�cient and �exible way. In this section we
brie�y review the chosen redundant control concept: the general de�nition of task
spaces, inverse kinematics and attractor dynamics to generate whole-body motion
for high-dimensional humanoid robots.

Findings from the �eld of biology impressively reveal how ef�ciently move-
ment is represented in living beings. Besides the well-known principle of movement
primitives, it is widely recognized that movement is represented in various frames
of reference, such as in eye centered, reach and grasp centered or object centered
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ones [15]. Egocentric frames describe movements with respect to the own body, and
are a powerful representation when it comes to introducing invariance to a task. We
borrow the above principle and use it as the underlying description of our control
and planning models.

This work will focus on the large class of kinematically controlled robots. They
differ from computed torque concepts such as [36] in that on the lowest level, the
movement is represented in positions or velocities insteadof torques. For this class
of robots, the projection from a con�guration space into task spaces is often done
with redundant control schemes (e. g.resolved motion rate control, see [17,42,49]).
Proper choice of the task description is a crucial element inhumanoid robot control.
Other than in other robotics domains, tasks may be carried out with two effectors.

Among the well-known trajectory generation methods, we chose a dynamical
systems approach. This is closely related to the biological�ndings, and yields fur-
ther advantages like robustness against perturbations anddynamical environments
[32,48]. The overall control architecture is summarized inFigure 1.1.

1.2.1 Control System

Kinematic control of redundant robots has been subject to extensive research. A
popular method that allows one to split the control objective into a task and null
space goes back to Liégeois [42] in the 1970s. Others have extended this approach
towards introducing hierarchical task spaces [3, 16, 26, 53], to deal with collisions,
singularities and ill-de�ned con�gurations [14,43,44,61] and have formulated crite-
ria to map into the null space of such systems [11]. References [17,49] give a good
overview on these approaches.
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We employ a motion control system that is based on [42]. The task space trajec-
tories are projected into the joint space using a weighted generalized pseudo-inverse
of the task Jacobian. Redundancies are resolved by mapping the gradient of a joint
limit avoidance criterion into the null space of the motion.Details on the whole-body
control algorithm are given in [18,19]. The whole-body controller is coupled with a
walking and balancing controller [31], which stabilizes the motion. Further, a real-
time collision avoidance algorithm [61] protects the robotagainst self-collisions.

Setting up the controller equations is done by �exibly augmenting a task Jacobian
Jtask holding row-wise the Jacobians of the desired task descriptors that we derive
in Section 1.2.1.1 (see also [18]).

�q = J# �xtask� a NW� 1
�

¶H
¶q

� T

: (1.1)

Matrix J# is a weighted generalized pseudo-inverse ofJ with metric W and null
space projectorN:

J# = W� 1JT (JW� 1JT )� 1 N = E � J# J: (1.2)

Matrix E is an identity matrix. We chose a diagonal matrixW with elements propor-
tional to the range of the corresponding joint. ScalarH is an arbitrary optimization
criterion. Its gradient is mapped into the null space with projection matrixN and
scalara de�ning the step width. Vector �xtask comprises a feedback term to mini-
mize the tracking error (closed loop inverse kinematics or “CLIK”).

1.2.1.1 Task Kinematics

The robot's kinematics and dynamics are described in the form of a tree structure
depicted in Figure 1.2. The individual links are connected by degrees of freedom
(joints) or �xed transformations. Further, the tree may also comprise objects from
the environment. This allows derivation of the inverse kinematics equations not only
with respect to a heel or world reference frame, but also to formulate task descrip-
tors accounting for robot–object relations. In the forwardkinematics pass (left), the
transformations of all bodies are computed according to thecurrent con�guration
space vector. The connectivity of the tree is such that the computation can be car-
ried out starting from a root node and descends the branches of the tree. In the
inverse kinematics pass (right), the desired Jacobians arecomputed. Since they de-
pend only on the degrees of freedom that connect the respective body to the root,
the connectivity in this direction is the shortest path towards the root node. We em-
ploy an ef�cient algorithm that allows one to compute the Jacobians by re-using the
results of the forward kinematics pass. We will skip the details for brevity and refer
the interested reader to [10].

In the following, a task is de�ned as the movement of one body with respect to
any other belonging to the tree. This allows, for instance, one to describe the position
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Figure 1.2 (a) Forward kinematics loop; and (b) loop for Jacobian computation

of one hand with respect to the other, the orientation of the head to the body, etc.
It is also possible to describe robot link transformations with respect to objects in
the environment, such as the position of the hand with respect to an object, or the
direction of the gaze axis with respect to an object.
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Figure 1.3 Relative hand–object task description: (a) with respect to thecylinder; and (b) with
respect to the hand

The choice of the order of the relative coordinates yields some interesting aspects.
This is illustrated in Figure 1.3 for a simple planar example. Representing the move-
ment of the hand with respect to the cylinder results in Figure 1.3 (a). A coordinated
hand–object movement has to consider three task variables(x y j ). Switching the
frame of reference and representing the object movement with respect to the hand,
such as depicted in Figure 1.3 (b), leads to a description of the movement in hand co-
ordinates. In this example, this might be advantageous, since the object is symmetric
and can be approached from any side. While in the �rst case the task variables are
dependent, in the second casej andy are invariant and can be set to zero. There are
many other examples, such as representing a gazing controller as an object in head-
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centered coordinates which is “pointed” to by the focal axis, or a pointing controller
in a similar way.
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Figure 1.4 Relative effector kinematics

To mathematically formalize this concept, we look at the relative kinematics of
an articulated chain, such as depicted in Figure 1.4. Coordinate frame 0 denotes its
origin. Frame 1 is an arbitrary body which is connected to 0 through a set of joints.
Body 2 shall be represented relative to body 1 with vectorr12. We now can write the
(coordinate-free) kinematic equations as follows:

r12 = r02 � r01 �r12 = �r02 � �r01+ w1 � r12 : (1.3)

The last term of Equation 1.3 right is due to the rotation of body 1. Introducing
the coordinate system in which the respective vector is represented as the left sub-
index and projecting the velocities into the state space with the respective Jacobians
�r i = JT;i �q andwi = JR;i �q, the differential kinematics becomes

1 �r12 = A10
�

0JT;2 � 0JT;1 + 0r̃T
12 0JR;1

�
�q = JT;rel �q; (1.4)

with JT andJR being the translational and rotational Jacobians, respectively, expres-
sionr̃ = r� being a skew-symmetric matrix representing the outer product, andA10
being a rotation matrix from frame 0 to frame 1. If the reference (“1”) body corre-
sponds to a �xed frame, it has no velocity and the corresponding Jacobian is zero. In
this case, we get the standard differential end effector kinematics1 �r12 = A10 0JT;2 �q.

The task descriptors for attitude parameters are computed slightly differently.
This is due to the fact that many parametric descriptions such as Euler angles have
discontinuities and ill-de�ned con�gurations (gimbal lock). We therefore project the
tracking error directly on the Jacobians for the angular velocities:

1w12 = A10(0JR;2 � 0JR;1) �q = JR;rel �q ; (1.5)
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using the formulation of [13] for Euler angles. It is particularly elegant and avoids
gimbal-locks. Similar feedback errors are formulated for 1D and 2D orientation task
descriptors, for details see [18].

A well-investigated task descriptor is the overall linear momentum, which corre-
sponds to the center of gravity velocity [34,60]. It computes as

rcog =
1
m

bodies

å
i= 1

mircog;i �rcog =
1
m

(
bodies

å
i= 1

miJT;cog;i

)

�q = Jcog �q : (1.6)

Similarly, we can derive the task descriptor for the overallangular momentumL
with respect to a non-accelerated reference. TensorI denotes the inertia tensor of
the respective body link:

L =
bodies

å
i= 1

mircog;i � �rcog;i + Iw =

(
bodies

å
i= 1

mi r̃cog;iJT;cog;i + IiJR;i

)

�q = Jam �q: (1.7)

Another very simple but useful task descriptor is the movement of a single joint.
The task variable is simply the joint angle, and the single joint Jacobian is a zero
row vector with a single “one” entry at the column of the corresponding joint.

1.2.1.2 Null Space Control

In the following we present two of the null space criteria employed, namely a well-
known joint limit avoidance criterion [42] and a collision avoidance criterion. The
joint limit cost computes as

H jl (q) =
1
2

dof

å
i= 1

�
qi � q0;i

qmax;i � qmin;i

� 2

: (1.8)

The contribution of each individual joint is normalized with respect to its joint range.
To avoid collisions, we use the formulation in [62] and loop through all collision-
relevant pairs of bodies, summing up their cost contributions. Each body is rep-
resented as a rigid primitive shape. Currently we use cappedcylinders and sphere
swept rectangles [61]. The cost associated with a pair of bodies is composed of two
terms, one related to the distance between the closest points dp = jP1 � P2j and one
related to the distance between their centersdc = jC1 � C2j, see Figure 1.5 (a). To
compute the closest point costgp, we set up three zones that are de�ned by the
closest point distancedp between two collision primitives. Figure 1.5 (b) shows the
linear, the parabolic and the zero cost zones, respectively. In the region between
contact (dp = 0) and a given distance boundarydB, the closest point costgp is de-
termined as a parabolic function, being zero atdp = dB and having the slopes for
dp = 0. It progresses linearly fordp < 0, and fordp > dB, it is zero.

Similarly, the center point costgc shall only be active if the link distance has
dropped below the distancedB. The cost function will be scaled continuously with
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Figure 1.5 Zones for the collision cost function determination: (a) distance terms; and (b) cost
zones

a factor zero atdp = dB and one ifdp = 0. This cost adds an additional approximate
avoidance direction, which is useful when the bodies are in deep penetration and
the closest point direction is not well de�ned. Putting thistogether, the costs for one
body pair become

gp =

8
><

>:

sdB(dB � 2dp) for dp < 0
s(dp � dB)2 for 0 � dp � dB

0 for dp > dB

gc =

8
>><

>>:

e� dc for dp < 0�
1� dp

dB

�
e� dc for 0 � dp � dB

0 for dp > dB

(1.9)
with sde�ning the inclination of the gradient when penetrating. The overall collision
cost is summed over all relevant body pairs as

Hcoll(q) =
pairs

å
i

gp(dp;i) + gc(dp;i ;dc;i): (1.10)

To derive the overall collision gradient, let us �rst derivethe gradient of the distance
dp = jp1 � p2j w.r.t. the joint con�gurationq. Differentiating with respect to the
closest pointsp1 andp2 leads to

¶dp

¶ p1
= �

1
dp

(p2 � p1)T ¶dp

¶ p2
=

1
dp

(p2 � p1)T : (1.11)

If the collidable object is �xed to the environment, the partial derivative of the points
with respect to the state is a 3� do f zero matrix. If it corresponds to a body part
or is attached to the robot's body (e.g. held in the hand), we use the closest point
Jacobians¶ p1

¶q = Jp1 and ¶ p2
¶q = Jp2. With Equation 1.11 we get

¶dp

¶q
=

1
dp

(p2 � p1)T (Jp2 � Jp1) : (1.12)



1 Whole-body Motion Planning – Building Blocks for Intelligent Systems 9

Analogously we can compute the gradient ofdc = jC1 � C2j. Differentiating Equa-
tion 1.9 with respect to the distancedp, and inserting the distance gradient (Equation
1.12) leads to the closest point gradient

�
¶gp

¶q

� T

=

8
>><

>>:

� 2sdB
dp

(Jp2 � Jp1)T (p2 � p1) for dp < 0;

0 for dp > dB;

2s(dp� dB)
dp

(Jp2 � Jp1)T (p2 � p1) else.

(1.13)

The cost functiongc depends on the distance between the body centersdc and on
the closest point distancedp, so we need to apply the chain rule to get the center
point gradient:

¶gc

¶q
=

¶gc

¶dc

¶dc

¶q
+

¶gc

¶dp

¶dp

¶q
(1.14)

where
¶gc

¶dc
= �

dB � dp

dB
e� dc

¶gc

¶dp
= �

1
dB

e� dc (1.15)

and the respective distance gradient is given in Equation 1.12. The overall collision
gradient is

¶Hcoll

¶q
=

pairs

å
i

¶gd(i)
¶q

+
¶gc(i)

¶q
: (1.16)

1.2.2 Trajectory Generation

The quality of robot movements is very much related to the underlying trajectory
generation. Popular trajectory generation methods use higher-order polynomials
(splines) [9,51], time-optimal pro�les [29], or employ attractor dynamics [32]. Poly-
nomials are particularly suited for movements that requireprecise timing, such as
generating step patterns, etc. Dynamical systems represent the time implicitly and
can form attractor systems or periodic solutions. They are closely related to the bi-
ological �ndings, and yield further advantages like robustness against perturbations
and dynamic environments. We apply a simple attractor system [18, 62] to the task
elements to be controlled. The same attractor dynamics are applied to other con-
trollers that are not related to the inverse kinematics, such as “closing the �ngers to
a power grasp”, etc.

Given two pointsx�
k andx�

k+ 1 we shift the attractor point continuously from one to
the other. This is captured by the linear interpolated trajectoryrt 2 Rm. In Figure 1.6
this is illustrated by the dashed line. Pointrt is taken as attractor point to a second
order dynamics which generates the task trajectoryxt 2 Rm:

xt+ 1 = xt + p(xt ;xt� 1; rt+ 1) (1.17)

p(xt ;xt� 1; rt+ 1) = a(rt+ 1 � xt) + b(xt � xt� 1) : (1.18)
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The step response of the scheme is depicted as the solid line in Figure 1.6. We
choose the coef�cientsa andb according to

a =
Dt2

T2
mc+ 2TmcDtx + Dt2 b =

T2
mc

T2
mc+ 2TmcDtx + Dt2 ; (1.19)

with a relaxation time scaleTmc, the oscillation parameterx , and the sampling time
Dt. We selectx = 1, which leads to a smooth non-overshooting trajectory and an
approximately bell-shaped velocity pro�le.

1.2.3 Task Relaxation: Displacement Intervals

In common classical motion control algorithms the trackingof the desired trajecto-
ries is very accurate. In many cases the tracking accuracy ofa reference trajectory
is not very critical, or there are at least some phases where the accuracy may be
lower than in others. For example, “reaching” or “pointing”a humanoid robot to an
object does not necessarily have to precisely follow the commanded trajectory. A
certain impreciseness is permitted, and sometimes even desired, since machine-like
motions look somewhat strange when performed by humanoid oranimal robots.

In this section, we introduce the concept of displacement intervals [19] in task
space. These intervals describe regions around a given taskvariable, in which the
tracking has to be realized. Analogous to the null space motion, the displacement
intervals are exploited to satisfy one or several cost functions. By choosing appro-
priate criteria, the motion can be in�uenced in almost arbitrary manners, e.g., with
respect to joint limit or collision avoidance, energy etc. In the following, the gra-
dient of the joint limit avoidance cost function (Equation 1.8) is projected into the
task interval. Its gradient with respect to the task space is

¶H
¶x

=
¶H
¶q

¶q
¶x

= ÑHT J#: (1.20)

To describe the displacement interval in position coordinates, many solutions are
thinkable: ellipsoids, cuboids or other 3D shapes. We choose a cuboid because the
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computational complexity is low and the interval can be described in a physically
transparent way. The cuboid can be conceived as a virtual boxaround the reference
point, in which the effector is allowed to move (see Figure 1.7). If one dimension
of this box is set to zero, the effector may move on a plane. Similarly, setting two
box-dimensions to zero, the effector may move on a straight line in the third, free
direction. Setting all interval dimensions to zero leads tothe standard motion con-
trol tracking the reference trajectory exactly. Therefore, the proposed approach can
be seen as an extension to common trajectory generation methods. Figure 1.8 left
illustrates the computation of the linear displacement in each iteration. It computes
as

dxdisp = � a pos

�
¶H
¶x

� T

: (1.21)

Displacementxdisp is superposed with the reference trajectory, and it is checked if
the updated effector command lies within the permitted boundary. If the boundary
is exceeded, the displacement vectorxdisp is clipped to stay within the permitted
region. Figure 1.8 (a) illustrates this for a 2D example.

An interval formulation for the effector axis direction is depicted in Figure 1.8
(b). The commanded effector axisacmd is allowed to move within a cone with sym-
metry axis being the reference axis and opening anglej being the displacement
boundary. The cone edge is of unit length, so that the depicted circumference is the
intersection of the cone and a unit sphere. The tangential displacement on the unit
sphere results from the gradients¶H

¶wx
and ¶H

¶wy
:

da = � aatt

0

B
B
@

¶H
¶wx
¶H
¶wy

0

1

C
C
A � acmd: (1.22)
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Figure 1.8 (a) Position and (b) attitude intervals

If the propagated command axisacmd = are f + adisp lies within the tolerance cone,
no clipping has to be carried out. Otherwise, the command axis has to be clipped
according to the lower parts of Figure 1.8.

1.3 Stance Point Planning

When carrying out a task with a humanoid robot, it is crucial todetermine a good
stance position with respect to the object to grasp or manipulate. There exist some
interesting approaches, which sample and evaluate a reachable space for feasible so-
lutions [24,25,64]. In this section, we will explain a potential-�eld-based method to
determine an optimal stance. The underlying kinematic model is depicted in Figure
1.9. We introduce a stance coordinate system that is described by the translation and
rotation in the ground plane, corresponding to the stance poses the robot can reach.
The upper body (body frame) is described with respect to thisstance frame, the suc-
cessive links (arms, legs, head) are attached to the upper body. Now we set up the
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Figure 1.9 Kinematic model for stance pose optimization

controller equations according to Section 1.2. The important aspect is to unconstrain
the three stance dofs, simply by assigning zeros to the corresponding column of the
task Jacobian. This results in the stance dofs not being employed in the task space
of the movement. However, they are still being utilized in the null space.

When assigning a target to the task vector, the controller equations will in each
iteration make a step towards it, while shifting the stance coordinate system to a po-
sition and orientation that leads to a (local) minimum with respect to the employed
null space criteria. A minimum can be found with regression techniques. Figure
1.10 illustrates this for the task of grasping a basket from atable. The task vector is
composed of the following elements:

xtask= ( xT
f oot� l j T

Euler; f oot� l xT
f oot� r j T

Euler; f oot� r xT
cog;xy xT

hand� l j T
Polar;hand� l )

T :
(1.23)

The tasks for the feet are chosen to be in a normal stance pose.The horizontal
components of the center of gravity lie in the center of the stance polygon. The left
hand position and orientation are aligned with the handle ofthe basket. The null
space of the movement is characterized by a term to avoid joint limits (Equation
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1.8), and another term to avoid collisions between the robotlinks and the table
(Equation 1.16). The weight of the latter is increased in Figure 1.10 left to right. It
can be seen that the resulting stance pose has a larger body-to-table distance for a
higher collision weight. This scheme is very general as it can be applied to arbitrarily

Figure 1.10 Optimal stance poses for differently weighted collision cost

composed task vectors. The resulting stance pose will always be a local optimum
with respect to the null space criterion. Upon convergence,the resulting stance dofs
can be commanded to a step pattern generator which generatesa sequence of steps
to reach the desired stance.

1.4 Prediction and Action Selection

With the control concept presented, ASIMO can walk around and safely reach to-
wards objects while maintaining balance and avoiding self-collisions. However, the
decision ofhow to reach, for instance, what hand to use or how to approach the
object, is not tackled. In this section we will present an approach that solves this
problem within a prediction and action selection architecture as depicted in Figure
1.11 (see [8, 22] for more details). The underlying idea is toconnect the sensory
(here visual) input to a set of predictors that correspond tosimulated controllers of
the robot. Each predictor solves the task associated with the sensory input in a differ-
ent way. Within a strategy selection, these behavioral alternatives are continuously
compared, and the command to the most suitable one is given tothe physical robot.

First, we will explain the visual perception system employed which is based on
a so called proto-object representation. Proto-objects are a concept originating from
psychophysical modeling and can be thought of as coherent regions or groups of
features in the �eld of view that are trackable and can be pointed or referred to with-
out identi�cation. Based on these stimuli, a prediction-based decision system selects
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the best movement strategy and executes it in real time. The internal prediction as
well as the executed movements incorporate the control system presented.
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Figure 1.11 Overview of the system design

1.4.1 Visual Perception

To generate such proto-objects, we extract 3D ellipsoids from the visual input based
on color segmentation and a disparity algorithm. The extracted blobs encode the
position, metric size, and orientation of signi�cant visual stimuli. They are stabilized
and organized consistently as proto-objects in ashort term memory. According to a
set of extracted criteria, proto-objects are categorized into foundif the object is seen
in the visual scene,memorizedif it has been found recently but is not seen currently,
andinaccurateif it is only partially visible. Details of the chosen approach can be
found in [8]. The 3D data and the above evaluation result are sent to the behaviors
(search, track, reach). Each behavior can then extract the relevant information.

1.4.2 Behavior System

The output of the sensory memory is used to drive two different gazing behaviors:
1) searching for objects; and 2) tracking objects. Separatefrom these behaviors is a
decision instance orarbiter [5] that decides which behavior should be active at any
time. The decision of the arbiter is based on a scalar �tness value that describes how
well a behavior can be executed. In this concrete case, tracking needs at least an
inaccurate proto-object position to look at. Thus the tracking behavior will output a
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�tness of 1 if any proto-object is present and a 0 otherwise. The search behavior has
no prerequisites at all and thus its �tness is �xed to 1.

The search behavior is realized by means of an inhibition of return map with a
simple relaxation dynamics. If the search behavior is active and new vision data is
available it will increase the value of the current gaze direction in the map and select
the lowest value in the map as the new gaze target. The tracking behavior is realized
as a multi-tracking of 3D points. The behavior takes all relevant proto-objects and
object hypotheses into account and calculates the pan/tiltangles for centering them
in the �eld of view. The two visual interaction behaviors together with the arbiter
switching mechanism show very short reaction times and haveproven to be ef�cient
to quickly �nd and track objects.

Similarly to the search and track behaviors, the reaching behavior is driven by
the sensory memory. It is composed of a set of internal predictors and a strategy se-
lection instance. Each predictor includes a whole-body motion controller described
in Section 1.2.1 and a �tness function.

The key idea is to evaluate this set of predictors, each solving the given task in
different ways. In the following, we look at the task of reaching towards an object
and aligning the robot's palm with the object's longitudinal axis. This corresponds
to a pre-grasp movement, which brings the hand in a suitable position to grasp an
object. In a �rst step, the visual target is split up into different motion commands,
with which the task can be achieved. Four commands are chosen: reaching towards
the target with the left and right hand, both while standing and walking. While the
strategies that reach while standing assume the robot modelto have a �xed stance
position, we apply an incremental version of the stance point planning scheme in-
troduced in Section 1.3 to the strategies that involve walking. This leads to a very
interesting property: the control algorithm will automatically �nd the optimal stance
position and orientation with respect to the given target and the chosen null space
criteria. If a walking strategy is selected, the best stancepose is commanded to a
step pattern generator, which generates appropriate stepsto reach the desired stance
position and orientation. In each time step, the strategiescompute their motion and
an associated �tness according to the speci�c command. The �tness is composed of
the following measures:

� Reachability: penalty if the reaching target cannot be reached with the respective
strategy.

� Postural discomfort: penalizes the proximity to the joint limits when reaching
towards the target.

� “Laziness”: penalizes the strategies that make steps. This way, the robot prefers
standing over walking.

� Time to target: penalizes the approximate number of steps that are requiredto
reach the target. This makes the robot dynamically change the reaching hand also
during walking.

The costs are continuously evaluated, and the strategy withthe highest �tness is
identi�ed. The corresponding command is given to the physical robot. The robot
is controlled with the identical whole-body motion controller that is employed for
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the internal simulations. An interesting characteristic of the system is the temporal
decoupling of real robot control and simulation. The strategies are sped up by a
factor of 10 with respect to the real-time control, so that each strategy has converged
to the target while the physical robot is still moving. From another point of view,
the predictions could be seen as alternative results of a planning algorithm. A major
difference is their incremental character. We use a set of predictors as continuously
acting robots that each execute the task in a different way. The most appropriately
acting virtual robot is mapped to the physical instance.

1.4.3 Experiments

The system as described above was tested many times with different people inter-
acting with ASIMO with a variety of target objects. The scenario was always to
have a human interaction partner who has an elongated objectthat was shown or
hidden in various ways to ASIMO. The system is not restricted to only one object. If
a number of objects are close to each other, the system will try to keep all objects in
the �eld of view. If they are further apart, the objects leaving the �eld of view will
be neglected after a short while and the system will track theremaining object(s).

Objects are quickly found and reliably tracked even when moved quickly. The
robot will reach for any elongated object of appropriate size that is presented within
a certain distance — from 20 cm to about 3 m. ASIMO switches between reaching
with the right and left hand according to the relative objectposition with some hys-
teresis. It makes steps only when necessary. Figure 1.12 shows a series of snapshots
taken from an experiment. From second 1–7, ASIMO is reaching for the bottle with
its right hand. At second 8, the object becomes out of reach ofthe right hand, and
the strategy selection mechanism selects the left hand reaching strategy, still while
the robot is standing. At second 12, the object can not be reached with the left hand
while standing. The strategy selection mechanism now selects to reach for the object
with the left hand while walking towards it. The whole-body motion control gener-
ates smooth motions and is able to handle even extreme postures, which gives a very
natural and human-like impression even to the casual observer. For more details of
this system see [8].

1.5 Trajectory Optimization

The prediction architecture presented in the previous section allows the robot to dy-
namically act and react in a simple, but dynamically changing environment. How-
ever, it does not consider the overall movement throughout the trajectory, which is
relevant when it comes to acting in a more dif�cult environment, with the potential
danger to collide with objects, etc. In such cases more comprehensive planning and
optimization schemes are required.
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Figure 1.12 (a) Reaching towards a bottle; and (b) corresponding costs of predictor instances

A lot of research in this �eld has focused on using spline-encoding as a more
compact representation for optimization. This is particularly the case in the �eld of
industrial robot trajectory optimization. Examples of such systems utilize cost func-
tions that are formulated in terms of dynamics [30, 50], collision [56] or minimum
jerk [1].

General techniques like rapidly exploring random trees (RRTs) [37], or random-
ized road maps [35], have been shown to solve dif�cult planning problems like the
alpha puzzle, generating a complex balanced reaching trajectory for a humanoid
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robot, or plan footstep trajectories. These techniques consider a direct representa-
tion of the trajectory and focus on �nding a feasible solution rather than optimizing
the trajectory w.r.t. additional criteria.

An alternative view on ef�cient movement representation ismotivated from pre-
vious work on motor primitives in animals [6, 48]. Inspired by these biological
�ndings several researchers have adopted the concept of motor primitives to the
realm of robotic movement generation. For instance, Ijspeert et al. and Schaal et
al. [32, 33, 54, 55] focus on non-linear attractors and learning the non-linearities,
e.g., in order to imitate observed movements. These approaches optimize the para-
meters of a single attractor system, e.g., such that this single motor primitive imitates
as best as possible a teacher's movement.

In this section, we will review an attractor-based optimization scheme [62]. It
incorporates the robot's whole-body controller of Section1.2.1 into the optimization
process, and �nds a sequence of task space attractors from Section 1.2.2 describing
the optimal movement. The key idea is to optimize a scalar cost function by �nding
an optimal sequence of task space attractor vectors which determines the robot's
motion. We consider an integral cost function over the movement in the general
form of Equation 1 of Table 1.1. It is split into two terms. Function h subsumes
costs for transitions in joint space and depends on the current and the previous time
steps. It is suited to formulate criteria like the global length of the trajectory in joint
space and the end effector velocity at the end of the trajectory:

1. costsc1 = å T
t= 1(qt � qt� 1)TW(qt � qt� 1) for the global length of the trajectory

in joint space;
2. costsc2 = j f̃ (qT ) � f̃ (qT� 1)j2 for the end effector velocity at the end of the

trajectory.

Functiong subsumes cost criteria that depend on single time steps. It is suited to
account for costs that depend on the posture of the robot. We formulate criteria to
account for the offset of the �nal end effector state to a target, collisions and prox-
imities between collidable objects throughout the trajectory, and joint limit proxim-
ities:

3. costsc3 = j f̃ (qT ) � x̂j2 for the offset of the �nal end effector state to a target ˆx;
4. costsc4 = å T

t= 0Hcoll(qt) for collisions and proximities between collidable ob-
jects throughout the trajectory, see Equation 1.10;

5. costsc5 = å T
t= 0H jl (qt ) for joint limit proximities, see Equation 1.8.

The global cost functionC is the linear combination of these terms,C = å 5
i= 1ci .

The movement generation process can be summarized by Equations 5, 4, and 2 in
Table 1.1. To derive analytic gradients, the whole movementgeneration process can
be captured in the diagram in Figure 1.13 as a network of functional dependencies
between variables. This is similar to a Bayesian network, but based on determin-
istic rather than probabilistic dependencies. The diagramtells us how to compute
global gradients since the chain rule implies that for any global functionalC the
total derivative w.r.t. some arbitrary variable,
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Figure 1.13 Functional network of the control architecture

dC
dx� = å

childrenyi of x�

¶yi

¶x�

dC
dyi

: (1.24)

The gradient computation is carried out in a forward and a backward computation
step. In theforward propagation stepwe start with a given set of current attractor
points x�

1:K , then compute the task space trajectoryx0:T , then theq0:T -trajectory,
and �nally the global costC. In thebackward propagation stepwe propagate the
cost function gradients backward through the network usingthe chain rules. This
involves �rst computing gradientsdC=dqt , thendC=dxt , and �nally dC=dx�

1:K . Since
all computations in the forward and backward propagation are local, the overall
complexity isO(T).

Figure 1.14 (a) shows a snapshot series of an experiment. Thescenario has been
chosen such that a purely reactive controller would fail. The robot holds a cylinder
in the left hand and a box in the right hand. The target is to place the bottle into
the box, which involves moving both, the bottle and the box, in a coordinated way
without collision. The solution found by the robot is to movethe bottle in an arc
upwards and into the box while at the same time moving the box with the right hand
downwards below the bottle. The task space in this experiment was de�ned 10D,
comprising the positions of the left and right hand and the 2Dpolar orientation
of the hand aligned axis for both hands. Figure 1.14 (b) displays the cost decay
during optimization. A �rst collision-free solution is found after only 0.52 s, the
�nal solution converged after 1.5 s. The method is particularly useful for human–
robot interaction in complex environments, e.g., when the robot has to reach around
an obstacle that the human has just placed on the table. More experiments are given
in [62].

1.6 Planning Reaching and Grasping

In this section, we will build on the movement optimization scheme presented and
present an integrative approach to solve the coupled problem of reaching and grasp-
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Table 1.1 Costs and gradients underlying the optimization

cost function

C =
T

å
t= 0

g(qt ) +
T� 1

å
t= 0

h(qt ;qt+ 1) ; (1)

movement generation

qt+ 1 = qt + J#
t (xt+ 1 � f (qt )) � a (I � J#

t Jt ) W� 1 (¶qHt )T (2)

xt+ 1 = xt + p(xt ;xt� 1; rt+ 1) (3)

p(xt ;xt� 1; rt+ 1) = a(rt+ 1 � xt ) + b(xt � xt� 1) (4)

rt = ( 1� t )x�
k + t x�

k+ 1 ; k = btK=Tc ; t =
t � kT=K

T=K
(5)

chain rules following Equation 1.24
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partial derivatives

¶C
¶qt
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¶xt
= J#

t� 1 (12)

¶xt+ 1

¶xt
= 1+ p01(xt ;xt� 1; rt+ 1) (13)

¶xt+ 2

¶xt
= p02(xt+ 1;xt ; rt+ 2) (14)

p01(xt ;xt� 1; rt+ 1) = � a+ b ; p02(xt ;xt� 1; rt+ 1) = � b (15)
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Figure 1.14 (a) Putting a cylinder into a box; and (b) cost decay

ing an object in a cluttered environment. While �nding an optimal grasp is often
treated independently from reaching to the object, in most situations it depends on
how the robot can reach a pregrasp pose while avoiding obstacles. In essence, we
are faced with the coupled problem of grasp choice and reaching motion planning.

Most literature on grasp optimization focuses on the grasp itself, isolated from
the reaching movement. For instance, [59] review the various literature on de�ning
grasp quality measures, [57] learn which grasp positions are feasible for various
objects, [28] ef�ciently compute good grasps depending on how the objects shall be
manipulated, and [46] simplify the grasp computation basedon abstracting objects
into shape primitives. The coupling to the problem of reaching motion optimization
is rarely addressed. In [52], reaching and grasping is realized by reactive control
primitives. A recent approach [4] makes a step towards solving the coupled problem
by including an “environment clearance score” in the grasp evaluation measure.
In that way, grasps are preferred which are not prohibited byimmediate obstacles
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directly opposing the grasp. Still, the full reaching motion is neglected in the grasp
evaluation.

We approach this problem by proposing an object representation in terms of an
object-speci�c task map which can be learnt from data and, during movement gen-
eration, ef�ciently coupled into a movement optimization process. Further, we gen-
eralise the optimization scheme presented in Section 1.5 tocope with such task
maps [20,21].

With the termtask map, we refer to a map that comprises a set of sampled task
coordinates, each associated with a scalar quality measure. In previous work [20],
we proposed, for instance, to represent a set of hand–objectpregrasp poses with
respect to a failure/success criterion. These maps generally replace the concept of
one explicit reaching target by the concept of a whole manifold of feasible targets
in the task space. This relaxes the constraints imposed on the subsequent movement
optimization process, which is particularly bene�cial to improve other criteria gov-
erning the movement. If the chosen quality measure can be determined with the
robot's sensors, it is further possible to build up or re�ne task maps in real experi-
ments.

In the following, we will focus on simple “power grasps”. However, the approach
is not limited to a certain grasp. It is possible to representdifferent grasp types (e.g.,
precision grasps, etc.) in several task maps. The concept even holds for bi-manual
grasp strategies.

1.6.1 Acquisition of Task Maps for Grasping

Learning a task map requires exploring many different grasps on a speci�c ob-
ject. The �rst question is how different grasp trials are sampled. The second, how
each trial is evaluated. Previous approaches consider an exhaustive sampling over a
grid [4]. To reduce the number of samples, we proposed to use RRTs [20]. While
this technique is very fast, it is hard to generate a very dense set of samples. Fur-
ther, when the set of feasible grasps separates into disjoint clusters, RRTs typically
explore only one of the clusters. Here we will focus on an approach similar to the
heuristics proposed in [4] and [58]. We assume that the robotcan (visually) acquire
a rough estimate of the object volume. Using the approximateshape information we
can sample a random point from the volume and compute a pregrasp posture. For
this, we initialize the hand inside the object volume. The hand is then retracted so as
to get in palm contact with the object. Subsequently the �nger joints are closed until
they contact the objects surface. For this grasp, we collectthe following data: (1)
the hand position and orientation in coordinates relative to the object frame – this
6D pointg 2 R6 will become the vector of control parameters in the task space; (2)
the contact points, normals and penetration between the �nger segments and the ob-
ject – this information is used to compute a quality measure based on force closure,
which is a well-known measure determining the ability of a grasp to resist external
forces [47].
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While this learning phase can be executed on a real robot, we use realistic simu-
lations to speed up the process. The force closure is computed from simulated tactile
sensor positions and normals, excluding those that have zero pressure. In that way
we collect a data set consisting of control parameters inR6 and the corresponding
force closure scalars.

(a)

(b)

Figure 1.15 (a) Disjoint clusters in sampled task map. Solutions with the thumb and palm pointing
upwards have been left out. (b) Initialization poses for different clusters.

For many realistic objects, the task map will consist of disjoint clusters which form
qualitatively different solutions. Consider, for instance, a simple basket with handle
that can be grasped on the top bar or on each of the side bars. The orientations and
positions of feasible grasps change discontinuously from bar to bar, forming a set
of clusters. We employ a Euclidean distance-based hierarchical clustering approach
to extract a set of qualitatively different solutions. The chosen algorithm does not
make any a priori assumption on the number of clusters.

Figure 1.15 (a) displays the extracted clusters for the given example. Clusters are
formed by grasps applied to the left, right and top handle of the basket. In the �gure,
only the position elements of the 6D task map parameters are visualized. We only
consider clusters of samples that have a signi�cant size, eliminating outliers that
comprise only a few samples.
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1.6.2 Integration into Optimization Procedure

To �nd an appropriate initialization for the optimization problem, the target posture
at the end of the movement is computed according to each cluster center, using
inverse kinematics. The different target postures are thencompared by anend-state
comfortvalue, motivated from psychological studies. It is based onthe joint limit
and collision costs given in Equations 1.8 and 1.10. The bestsolution determines the
target task vector to initialize the optimization problem.Figure 1.15 (b) illustrates
the initializations for a given location of the basket on thetable.

To incorporate the learnt task maps seamlessly into the optimization process, we
formulate criteria to account for both the proximity to the nearest solution in the
task map manifold and the quality of the resulting grasp: Theproximity criterion
enforces a smooth and collision-free movement into the manifold of feasible grasps
represented in the map. It “pulls” the �nal grasp towards themanifold of valid pre-
shape postures in the course of the optimization. Thequality criterionevaluates the
quality of the �nal grasp. It is based on the force-closure quality measure for each
task map sample and guides the movement towards a preshape posture that leads to
a high-quality grasp.

The proximity criterion will replace the distance of the target end-effector state
and contribute to the cost functiong in Equation 1 during motion optimization.
Given the �nal task state at the last time step (e.g., the handposition and orientation
relative to the object), we compute the nearest elementxmap in the task map. Now
we de�ne a cost:

gp = ( xrel
t � xmap)TWmap(xrel

t � xmap) : (1.18)

The metricWmapaccounts for the difference in the linear and angular units.The near-
est neighbor in the task map to the hand is computed with the approximate nearest
neighbor algorithm described in [2]. For this, the hand position and orientationxrel

t
is represented in the reference frame of the object. The gradient is

¶gp

¶xrel
t

= 2(xrel
t � xmap)TWmap: (1.19)

To account for the quality of the grasp that has been determined with the force
closure measure, each sample of the task map is interpreted as a Gaussian:

fi = j2pS� 1
i j�

1
2 exp(�

1
2

dS;i); (1.20)

with a mean vectorm and some small neighborhooddS;i = ( xi � m)TSi(xi � m),
determined by covariance matrixS� 1. The overall cost is computed as a weighted
mixture of Gaussians considering the quality measure (force closure)wi associated
with each sample:

gq =
1

å j fi j
å wi fi : (1.21)
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We skip the gradient for brevity. This model has been chosen to account for the
noise associated with the chosen force closure value. The noise is mainly due to the
discontinuous number of contacts, the determination of thecontact points and some
other aspects. The mixture model smooths the criterion in a local region, assuring a
smooth gradient.

While the proximity criterion tries to pull the �nal hand posture towards the
task map manifold, the quality criterion becomes active only when the �nal hand
posture is close to the manifold. It tries to level the targetpose towards the best
force closure. Figure 1.16 (b) shows the two cost terms over the time course of a
trajectory. The proximity cost decreases as the �nal hand posture converges to the
task manifold; the quality cost shows activity only when thehand posture is close
to the manifold. To account for the formulated criteria during optimization, their
gradient has to be derived with respect to the state vector according to termg0 in
Equation 10 of Table 1.1. For this, we can rewrite the differential kinematics as

¶gmap

¶qt
=

¶(gp + gq)

¶xrel
t

¶xrel
t

¶qt
=

¶(gp + gq)

¶xrel
t

Jrel; (1.22)

with Jrel being the Jacobian of the task vector relating to the relative hand–object
coordinates of the task map. This means that the task map can be represented in
different coordinates than we chose to control the system. We can, for instance,
represent the task map in relative hand–object coordinatesand control the movement
in global coordinates.

Both quality and proximity terms are only evaluated in the last time step of the
trajectory, since this corresponds to the hand's �nal grasppose. Their effect is back-
propagated in time and on the attractor point locations withEquations 11 ff of Ta-
ble 1.1. The nearest neighbor query needs to be carried only out once in each opti-
mization iteration, which is advantageous in terms of computational ef�ciency.

1.6.3 Experiments

We have set up an experiment comprising a model of the humanoid robot ASIMO,
a table and a basket with a U-shaped handle, see Figure 1.15 (b). To account for
hand–object proximities, we consider collisions for the hand and �nger segments,
the lower arms, the body, the thighs and the environment objects table and basket.
The overall collision model comprises 30 body pairs. The following task variables
are subject to the optimization: right hand position and orientation (2D, polar angles)
between hand and basket. Further, we constrained the horizontal components of the
center of gravity and the foot transformations. Another constraint has been added
to the gaze direction vector: it will continuously travel towards the center of the top
basket handle. The employed task map has been sampled with 1000 valid grasps.
The best initialization of the trajectory is determined according to Section 1.6.2.
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Figure 1.16 (a) Cost terms during optimization run; and (b) cost terms during movement

The progression of the cost terms during the simulation run is depicted in Figure
1.16 (a). The costs massively decrease in the beginning, since the initial trajectory
leads to many collisions, violates some joint limits and doesn't exactly reach the
task map manifold. After a few iterations, it rapidly converges to a minimum. The
enlarged subimage in the �gure shows that (1) the target taskmanifold is exactly
reached after approximately 15 iterations and (2) the graspquality converges after
approximately 25 iterations.

Figure 1.16 (b) shows the proximity and quality cost over theoptimal trajectory.
It can be seen that initially, the hand moves away from the table edge, and then
moves upward in an arc around the table. The �nally chosen grasp position is on the
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Figure 1.17 Movements for different basket locations

left side of the basket handle, which seems to lead to lower costs than grasping the
handle at its center.

Figure 1.17 shows three representative movement sequences. In the upper row of
the �gure, the robot reaches and grasps for the inner handle of the basket. During
reaching, it avoids to hit the other handles and �nally shifts its hand to the lower
part of the handle before closing the �ngers. In the middle row, the basket has been
moved away in the frontal direction. The optimal pregrasp was found on the right
end of the basket's top handle. In the lower row, the basket was moved to the left
side. In this location, the movement optimization was initialized with the right han-
dle. In this case, the hand did not have to move under the top handle, which resulted
in a more “relaxed” movement.

1.7 Conclusion

In this work we presented elements towards a consistent control, prediction and
movement planning architecture for humanoid robots. Movement control is achieved
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with a classical redundant control concept that has been extended with mechanisms
to ensure balance stability and self-collision avoidance.This concept is the common
basis of the subsequently presented methods that aim towards more movement in-
telligence. We presented a potential-�eld-based method todetermine optimal stance
poses for arbitrary end-effector tasks. It is an important element in the presented
prediction and action selection architecture. This architecture predicts the outcome
of a set of movement alternatives that solve a given task in different ways. The novel
aspect is to continuously predict and evaluate the movementof a set of virtual con-
trollers in parallel, these being able to quickly reorganize the movement behavior
based on perceptual information. In order to cope with movements in more complex
environments, a holistic trajectory optimization approach was presented. It operates
on a somewhat slower time scale, but is still suited to be applied in interactive sce-
narios. Comparing this to the prediction architecture, it computes movements that
satisfy criteria concerning the overall movement throughout a trajectory, such being
able to reach towards objects while avoiding collisions andself-limits of the robot.
This scheme has been extended to the coupled problem of reaching and grasping
with the concept of object-speci�ctask maps. These maps represent a functional
characterization of objects in terms of their grasp affordances, i.e. a manifold of
feasible pregrasp poses.

All elements have been veri�ed in simulations and experiments with the hu-
manoid robot ASIMO, and have been successfully integrated into large-scale sys-
tems such as [7,8,23].
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