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Abstract— Physical exploration refers to the challenge of
autonomously discovering and learning how to manipulate
the environment’s degrees of freedom (DOF)—by identifying
promising points of interaction and pushing or pulling object
parts to reveal DOF and their properties. Recent existing
work focused on sub-problems like estimating DOF parameters
from given data. Here, we address the integrated problem,
focusing on the higher-level strategy to iteratively decide on
the next exploration point before applying motion generation
methods to execute the explorative action and data analysis
methods to interpret the feedback. We propose to decide on
exploration points based on the expected information gain,
or change in entropy in the robot’s current belief (uncertain
knowledge) about the DOF. To this end, we first define how
we represent such a belief. This requires dealing with the
fact that the robot initially does not know which random
variables (which DOF, and depending on their type, which
DOF properties) actually exist. We then propose methods to
estimate the expected information gain for an exploratory
action. We analyze these strategies in simple environments and
evaluate them in combination with full motion planning and
data analysis in a physical simulation environment.

I. INTRODUCTION

Most robotic tasks require manipulating objects in the
world. Opening drawers to retrieve an object, grasping a
door handle to open a door, or pressing a button to switch
on the light—these are examples for tasks robots must be
able to perform. All of these tasks involve the actuation
of degrees of freedom (DOF) external to the robot. While
learning about the internal DOF of the robot has long been
a focus of system identification research [1], the problem
of learning the DOF external to the robot has only recently
received attention [2]. While there exists robust perceptual
algorithms to perceive DOF from object movement [3], [4],
the question of how to explore the environment to collect
such data, find these DOF, and to acquire information about
their characteristics, e.g., joint type or orientation of joint
axis, has not been thoroughly studied.

We refer to this problem as the physical exploration
challenge: autonomously discovering and learning how to
manipulate the environment’s degrees of freedom (DOF) by
iteratively identifying promising points of interaction and
trying to push or pull object parts to reveal DOF and their
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Fig. 1. The robot interacts with the environment and updates its belief
in response to its observations. Transparency corresponds to the amount of
knowledge available to the robot, where a fully transparent object indicates
no knowledge and a solid object means full knowledge.

properties. To address this challenge, we combine research
from active learning [5], bandits [6], and robotics to devise
an approach to exploration of DOF in complex environments.
Active learning strives to maximize the learning rate by
actively choosing the most informative samples, whereas
the theory of bandits deals with the problem of sequential
decision making. Both of these aspects must be considered
for explorative robot behavior. We leverage insights from
these fields to formulate optimality criteria for exploration
strategies. However, we first must formulate belief repre-
sentations that capture the task-relevant structure of the
environment in ways that enable us to explore external DOF
efficiently.

The following are our main contributions:
• We formulate the exploration challenge in complex

environments with many DOF (see Sec. III).
• We propose a probabilistic belief representation to cap-

ture the robot’s current knowledge state, including un-
certainty about the environment’s DOF, their properties,
and relations (see Sec. IV).

• We propose a novel way to deal with the fact that
the robot cannot initially know which random variables
actually exist, as this depends on which DOF exist and
their type.

• We propose how a consistent definition of expected
entropy (or change of entropy) over our hybrid belief
representation and leverage results from active learning
to define various exploration strategies (see Sec. V).

• We integrate methods in a physical simulation envi-



ronment including a simulated PR2, motion planning
and execution methods, and data analysis methods to
interpret the action effects. We use this to demonstrate
autonomous exploration of complex environments with
dynamics (see Sec. VII) and compare different explo-
ration strategies.

II. RELATED WORK

We discuss the state of the art in the following research ar-
eas, relevant to the exploration challenge: A. exploration and
learning theory, B. belief representation, and C. interactive
perceiving and learning of articulated objects.

A. Exploration and Learning Theory

Machine learning includes many formalisms for which
exploration is important. In particular, active learning strate-
gies maximize the expected learning rate, which can be
expressed using Shannon information gain, model entropy,
or the agreement within a committee of learners [5], [7],
[8]. Recently, strategies based on upper confidence bounds
(UCB) have been shown to posses a bounded sub-optimality
in multi-armed bandit scenarios [6]. This has significantly
advanced our understanding of exploration strategies, and has
also advanced research in active learning [9]. Beyond active
learning, exploration also plays a central role in reinforce-
ment learning, where exploration strategies like E3, Rmax,
or the Bayesian Exploration Bonus have been proposed [10],
[11], [12].

All of the above exploration strategies require a repre-
sentation of uncertainty of the current world model, be it
explicit or implicit. We believe that this is one of the core
challenges when trying to transfer theoretically grounded ex-
ploration strategies from different areas of machine learning
to real-world exploration scenarios: How can we efficiently
represent a belief over the environment’s DOF, their hybrid
properties and relations? And how can we derive effective
exploration strategies based on these representations? The
standard approaches in active learning, bandits and RL lack
belief representations of sufficient expressiveness to address
the exploration challenge.

B. Belief Representation

A probabilistic belief representation allows to reason about
the uncertainty of the belief and informs efficient exploration
strategies. Graphical Models and Bayesian inference are
widely used as probabilistic representations within machine
learning and statistics [13]. Probabilistic belief representa-
tions are also well established in some subfields of robotics,
including SLAM [14] and stochastic optimal control [15],
[16]. However, in these areas, belief representations are
mainly used for estimating the own state. In contrast, Kael-
bling and Lozano-Pérez use a probabilistic belief repre-
sentation to represent the pose and pose uncertainty of
objects in the world [17]. They then reason and plan using
this representation. However, their work does not consider
uncertainty over the existence of DOF and their properties
and relations. In more recent work, they explore various

articulated mechanisms in a probabilistic representation.
However, they focus on determining the joint type of single
joints and do not consider the discovery of objects and
joints in the environment [18]. To overcome this limitation,
we will introduce a novel belief representation to enable
hierarchical representation of uncertainty over DOF types,
and, depending on the type, their properties and relationships.

C. Interactive Perceiving and Learning of Articulated Ob-
jects

Once an appropriate belief representation is identified, it
needs to be filled in from sensory experience. In the context
of the exploration challenge, this requires the identification
of DOF and their parameters from observations. Over the last
few years, the task of perceiving DOF from feature trajecto-
ries has been identified by Katz et al. [3]. In complementary
work, Sturm et al. [4] proposed a method of identifying
joint types from object trajectories. These methods show
that it is possible to robustly identify the kinematic type of
links from their movements. These movements, however, are
scripted and the challenge of automatically generating such
movement to perform exploration has only been explored
superficially in a very simple setting [2].

Endres et al. [19] acknowledge that, in addition to the
kinematic structure of the world, the dynamics of objects
also play an important role. They learn the dynamics of doors
through manipulation to be able to predict the behavior of
the swinging door. The data used for learning is generated
by the robot itself.

The exploration challenge is based on the idea that the
robot can obtain perceptual information from its own inter-
actions, instead of relying on the perception of static scenes.
Katz et al. [20], [21] proposed a method based on this idea
to clear a pile of objects. The image is segmented, one
of several pre-defined actions is selected, and the object
in the pile is either moved to confirm the segmentation or
put into a basket. While these works clearly demonstrate
the advantage of interactive perception, they do not address
the full exploration challenge or discuss the exploration
strategies on a theoretical level. This will be the focus of
this paper.

Van Hoof et al. [22] apply an approach based on
information-theory to select the predefined actions to explore
the scene of objects. The scene is represented as graph. The
decomposition of the scene into objects is learned through
the “maximally informative interactions”. However, they do
not consider DOF in the environment.

All papers discussed so far describe learning from obser-
vations, an essential subproblem of the exploration challenge.
Our contribution lies in the exploration strategy as a whole,
including action selection based on expected information
gain, criteria to decide on the next manipulation action,
and autonomously generating motions that are informative
about the properties of DOF properties and their relations,
including joint type, friction and inertia, and joint limits.



III. PROBLEM STATEMENT (ALTERNATIVE)

Definition: We define the exploration challenge as the
task in which an agent has to minimize the uncertainty
about the environment. It can actively select objects in the
environment, interact with them and learn their properties.
More formally, we define the objective of the exploration
challenge to efficiently minimize the total sum of the entropy
over properties θi of object i

min
∑
i

H(θi). (1)

This definition of the exploration challenge is deliberately
general to make it interesting in the long run. To tackle this
problem in this paper, we make some assumptions about
the world and further limit the number of properties we are
interested in.

We assume the environment is a rigid-body world, i.e., the
environment consists of rigid objects, which can be static,
freely movable, or connected through joints (such as rota-
tional or prismatic joints). A rigid-body world can contain
walls, doors, windows, cabinets, drawers, any articulated
tools, etc. Also, our rigid-body worlds are deterministic, i.e.,
object and joint parameters, like mass or joint limits, remain
constant. The DOF of the environment are thus defined by
the joint configurations of freely movable objects. However,
all the robot’s observations are noisy.

The rigid-body assumption excludes worlds containing, for
example, liquids and flexible objects, but captures a wide
range of possible and interesting worlds. These worlds serve
as an adequate testbed for the exploration challenge and
facilitate the usual perception, manipulation, and planning
tasks in robotics.

For this paper, we also assume that the robot has access to
a segmentation of the scene into rigid bodies (objects); the
robot can perceive (without physical interaction) their shapes
and poses, but the kinematic structure and the dynamic
properties of the joints are initially unknown.

We propose the following minimum set of world properties
a robot should know about to be able to accomplish generic
manipulation tasks in a rigid-body world:
• Object type: An object can be either movable or static.
• Joint type: If there exists a joint between two rigid

bodies, the joint can be either rotational or prismatic.
• Joint limits: Each joint has a mechanical limit, captured

by a minimum and maximum value of the joint variable.
• Friction coefficient: Friction slows down the movement

of a shape attached to a joint. Although different phys-
ical things act together (friction forces, inertia etc.), we
summarize them in a single parameter.

We therefore define random variables for each property of
an object i: object type Oi, the joint type J i, and we group
the joint properties—upper and lower joint limit and friction
coefficient—in one parameter RV for each joint type (θir for
the rotational and θip for the prismatic joint).

Note that in this setting choosing an object to explore is
similar to choosing a bandit to play in the bandit scenario.

J i

T i

θir

Oi

θip

Fig. 2. Graphical model that represents the belief associated to a single
object i. Object type Oi, joint type Ji, joint parameters for the rotational
joint θir , joint parameters for the prismatic joint θip, the observed trajectory
T i of the object.

IV. BELIEF REPRESENTATION

We define a structured belief over the properties for
each object (see Fig. 2). Each object in the scene graph
is augmented with such a joint distribution. Fig. 1 shows a
visualization of the scene graph which is augmented with the
belief. The transparency indicates the entropy of the objects.

Let the index i denote the object i. In the following i
is omitted for readability. Let O and J be discrete and
θr and θp be a set of continuous random variables. The
object type O indicates if the object is movable or static.
Its discrete probability distribution is calculated from the
number of times an object is observed to be movable or
static. J represents the joint type which can be rotational or
prismatic. To represent the dependent nature of the world,
we also add a pseudo value nil, which we will explain in
the next section. The probability distribution is estimated by
counting the number of observations for each value. θr and
θp are the parameters of the joints, consisting of upper and
lower joint limit and a friction factor. These variables are
assumed to be Gaussian distributed. Dependent on all theses
variables is the trajectory T of the object. This variable is
observable.

A. The nil Value

In our scenario the existence of random variables depends
on other random variables, e.g., there is no joint type if
the object is static. The discovery of a movable object, for
example, would change the dimensionality of the belief and
also abruptly change the entropy of the belief.

To avoid a trans-dimensional space we propose the follow-
ing: We introduce a pseudo value for distributions which we
call nil value. It captures the situation when the existence
of the variable is unknown. Consider the case of object
type O and joint type J . If we have a probability P (O =
static) = 0.3, we only have a 70% belief that there is a
joint type involved in the model. So we have a deterministic
dependency between O and J , stating that the marginal is
P (J = nil) = 0.3. We call J nil-dependent on O being



Fig. 3. To generate interactions with the world, we either use a ’flying ball’ actuator (depicted as a green ball) or a simulated PR2 robot. Motions for
both are generated with an RRT initialized trajectory which is then optimized. Thus both abstractions are able to generate very similar behavior. Here we
show an interaction with a door for both types of interactions.

static. To avoid corrupting the entropy by possible existence
or non-existence of a RV we have to handle the nil value
case for discrete and continuous RV separately.

Definition: If X is a discrete random variable nil-
dependent on another discrete random variable Y having the
value v the conditional probability distribution is

P (X = nil|Y ) =

{
1 if Y = v

0 else
. (2)

With these pseudo values, we can compute meaningful
entropies over the distributions. Using this formalization,
we can ensure that an information gain is associated with
discovering that a static object does not have a joint, namely
the information gain that results from the change of the
variable from nil to the specific joint type.

The same problem arises with continuous distributions,
but it is not possible to inject a pseudo-value here. We
therefore use a Dirac delta as pseudo-value. The Dirac delta
function has the minimal entropy (i.e. −∞). Intuitively it
can be thought of as an infinitesimal nil value. The Dirac
delta simply formalizes in a continuous space that everything
is known about a variable and no uncertainty is in play.
Thus if we would know that a random variable does not
exist, we could set its distribution to a Dirac delta, because
there is no uncertainty over non-existing random variables.
The only question would be, where to position the Dirac
delta, since every actual value makes equally little sense—
a non-existing variable does not have any value. We could
introduce a a pseudo nil position, but it is unclear where this
position should be and how a marginal over the existence
of the random variable then would be computed. But since
we use this pseudo value only for computing the entropy,
the actual position of the Dirac delta is not important as
long as it does not bias the marginal distribution. Since the
entropy of the nil-depended distribution should decrease with
increasing probability P (Y = v) we center the Dirac delta
at the mean of the nil-dependent distribution conditioned on
Y 6= v. Thus we do not introduce any bias by the pseudo
value.

Definition: If X is a continuous random variable nil-
dependend on a discrete random variable Y , and v is a
possible value of Y , the conditional probability distribution

is given by:

p(X|Y = v) = δE[p(X|Y 6=v)](X), (3)

with δx(·) being the Dirac delta function at position x and
E[·] the expectation.

Although this is the clear translation of the discrete to the
continuous case, it is not possible to calculate the marginal
of a random variable if a Dirac delta function is involved.
We therefore approximate the Dirac with a very narrow
Gaussian distribution. This is particularly useful since the
joint parameters naturally have Gaussian distributions and
the entropies become easily comparable.

B. Calculating the Entropy

Now, for each object i and its parameters Oi, J i, θip, θ
i
r

we could calculate the entropy assuming independence of
its parameters

H(Oi, J i, θir, θ
i
p) = H(Oi) +H(J i) +H(θip) +H(θir).

However, the distributions are not independent. We define
an entropy measure, Ĥ , which weights the entropy of each
distribution according to its likelihood and takes the nil-
dependence into account:

Ĥ(Oi, J i, θir, θ
i
p) = H(Oi) (4)

+ P (Oi = movable) H(J i) (5)

+ P (J i = prismatic) H(θip) (6)

+ P (J i = rotational) H(θir). (7)

Note that Ĥ can be computed analytically because each
distribution is either categorical or Gaussian.

V. STRATEGIES

We compare four exploration strategies. The task of the
strategy is to select an object to explore. The action that
is performed is a simple “push the object” action. This is
implemented as a fixed force applied to the object at a
random surface point towards the center of mass of the
object. The set of actions is therefore equal to the set of
objects and the terms are used interchangeably.

1) Random: The agent chooses one of the objects in the
world uniformly at random. This simple strategy serves
as a baseline for our evaluation.
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Fig. 4. Graphical model to learn the properties of a 1D point mass.

2) Round robin: The agent selects objects sequentially.
Although this strategy seems to be a very simple, one
should note that for certain worlds—such as worlds
that only consist of the same objects and therefore re-
turn the same reward/reduction of entropy—the round
robin strategy yields optimal results.

3) Expected change of entropy: The agent computes
the expected change of entropy for each object in the
belief and then chooses the object that minimizes this
criterion. Formally this means

i∗ =argmax
i

Ĥ(Oi, J i, θir, θ
i
p)

− E
[
Ĥ(Oi, J i, θir, θ

i
p | T i)

]
.

(8)

Information-theoretic criteria are successfully applied
in active learning scenarios and are promising can-
didates for the exploration challenge. However, cal-
culating the expected change of entropy involves the
computation of the expectation over all actions. This
requires a forward model and is often expensive to
compute or even intractable. We only have a finite
set of actions and employ a simplified forward model
to calculate the expectation of all actions. Updating
all distributions can be done analytically and therefore
calculating the expectation can be done analytically.

4) Max Entropy: The agent computes the current entropy
for each object and chooses the one with the highest
entropy.

i∗ =argmax
i

Ĥ(Oi, J i, θir, θ
i
p) (9)

The assumption is that objects with high entropy are
not yet modeled properly and thus a large reduction
in entropy can be expected from exploring it. This
heuristic is successful in many kinds of problems,
however, it pays unjustified attention to actions with
random outcome.

Fig. 5. After drawing 20,000 samples (burn-in phase: 5,000 samples,
thinning: 2) and adjusting the parameters of the 1D point mass model to the
MAP values, the graphical model predicts the shown movement of a door
(red curve). The blue curve shows the observed data, whereas the green
curve shows the (unobservable) ground truth.

VI. MOTION GENERATION AND DOF PARAMETER
ESTIMATION FROM PERCEPTION

A. Motion Generation

For both abstraction levels of our agent, the PR2 and the
flying ball, we generate the full body motions with a rapidly-
exploring random tree (RRT) [23]. It is a bi-directional RRT
that samples directly in the joint space. To check whether
the sampled joint positions are collision-free we use the
SWIFT collision detection library1. This initial trajectory,
which is normally not smooth, is fed into a operational
space controller that optimizes the trajectory with a standard
Newton optimization method. The resulting trajectory is then
used to set the joint values of the agent directly. Fig. 3 shows
an example of the generated motion for both abstraction
levels of the agent.

B. DOF Parameter Estimation

The agent can perceive the position of objects in the world.
Once it interacts with an object it perceives a 3D trajectory
of the object. The object type Oi is updated with a static
observation if there was no movement, or with a moving
observation if movement was observed. For learning the
joint type J i and pose, we use the articulation library by
Sturm [4]. The distribution for the joint type J i is updated
accordingly.

Because the articulation library does not infer joint prop-
erties such as joint limits and a friction coefficient, we
employ a graphical model (shown in Fig. 4) to infer these
parameters. First, we project the 3D trajectory into the space
of the joint, i.e., the rotation about a revolute joint or the
translation along a prismatic axis. The resulting 1D trajectory
o1:t is derived from the underlying trajectory p1:t including

1http://gamma.cs.unc.edu/SWIFT

http://gamma.cs.unc.edu/SWIFT


Gaussian noise ε:

o1:t = p1:t + ε (10)

where ε ∼ N (0, σ). The behavior of pi can be described
by the following process, which is derived from the physical
equations of motion of a 1D point mass. Given the initial
position p0 and initial velocity v0, the position and velocity
can be predicted for each time step:

vt+1 = dt+1 ·
√
v2t − (2 · F · vt · τ), (11)

pt+1 = pt + vt, (12)

where τ is the time difference between time steps. The factor
dt accounts for the change in the moving direction of a
joint reaching the limit. The assumption of a perfectly elastic
collision at the upper joint limits U and lower joint limits L
results in

dt =

{
1 if L < pt < U

−1 if pt ≤ L or pt ≥ U
. (13)

We assume Gaussian priors around the initial position p0
and velocity v0, estimated by the observations. We choose a
uniform prior for the friction coefficient F and the limits L
and U .

To infer the parameters F , L and U which were summa-
rized as θr and θp in the previous sections we use PyMC [24]
—a Markov chain Monte-Carlo library— and in particular
the Metropolis-Hastings algorithm [25] to approximate the
distributions over these parameters. In following interaction
steps the posterior is used as a prior for the sampling process.

Fig. 5 shows the typical behavior of this graphical model
when observing a door for the first time. Consecutive obser-
vation of the same door further improves the learned model.

VII. EXPERIMENTS

A. Toy World Experiment

Our first set of experiments are in a purely synthetic sce-
nario to show the basic characteristics of a set of strategies.
A set of two objects is given. One of them is static, one
of them is attached to the static world by a prismatic joint.
This is the minimal example, that can lead to interesting
behavior. We expect an agent to focus on the movable object
and ignore the static object after only very few interactions.
In the scenario the agent—a purely algorithmic one with no
physical representation—choses an object to explore. The
agent then observes whether the object is static or movable,
which type of joint it is attached to (if at all), and the value
of the continuous parameters of the joint.

In Fig. 6, we show the situation after exploring each object
five times. We show both discrete distributions along with
their entropies and the expected change of entropy. The first
two plots show the distributions of object type and joint type
for each object, the third and forth show the discrete and
differential entropies for each distribution and the last plot
shows the expected change of entropy.

One can see that the first object is most likely a wall
or other fixed object and the second object is movable

based on a prismatic joint. Although both objects have been
explored the same amount of times, the expected change of
entropy is higher for the movable object. This is due to the
fact that the static object with high probability has a non-
existent joint type and joint properties (a nil value). Thus
the entropy of those distributions is very small (see the third
and fourth plot). Furthermore, the probability of change is
small, since we are already certain of the object being static.
Consequently, the expected change of entropy is also small.

An explorer maximizing the expected change of entropy
or choosing the object with maximal entropy would choose
the object with the prismatic joint over the static object.
This is an interesting behavioral observation. Intuitively, it
is a reasonable decision, since drawers and doors seem more
interesting to us. With our belief representation we were able
to catch this intuition by formally deducing higher Shannon
information from those objects with larger parameter sets.

Fig. 7 provides further support for this statement. It shows
the reduction of entropy achieved by the different strategies.
The information theoretic driven strategies (expected change
of entropy and max entropy) outperform the heuristic strate-
gies, although the difference in such a simple scenario is
small.

B. Physical Simulation

To test and compare the different strategies in a more
realistic scenario, we set up a simulation of an environment
with several DOF (see Fig. 1). In the abstract scenario, the
agent is a “flying ball” (as an abstraction of a general end-
effector), which can move freely through the space and can
interact with the various objects. In the second scenario, the
agent is a PR2 robot with two 7-DOF arms, a telescopic
spine, two grippers and a omni-directional base. Both levels
of abstraction are depicted in Fig. 3.

As shown in Fig. 8, in a more realistic scenario the
difference between strategies is more pronounced. Although
our observations are noise-free, we still have various sources
of uncertainty. The physics simulation is not very precise and
leads to unrealistic movements. Our 1D point mass model
may not capture all of these effects. Also the joint pose
inferred by articulation introduces a source of noise.

However, we can see that the strategies driven from infor-
mation theory lead to better and faster uncertainty reduction.
Also, the round robin strategy is still very successful. Since
we investigate the complete model, this surprising result is
reasonable. We have no specific task but to learn a precise
model of the world. So the properties of all objects are
equally important. Thus only the fact that static objects lack
certain properties makes them less interesting. Still, each
exploration leads to more certainty that they are static and
thus to a reduction of uncertainty.

VIII. CONCLUSION AND FUTURE WORK

We introduced the robotics exploration challenge. In this
challenge, a robot is expected to learn as efficiently as possi-
ble about the degrees of freedom present in the environment.
Pursuing such a challenge can advance the state of the art in
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Fig. 6. An example of a belief after ten exploration steps: Both objects have been explored five times. The first two plots show the distribution of the
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Fig. 7. The performance in minimizing the belief entropy of different strategies in the toy world (without noise and with 5% noise). 20 runs were
performed.
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Fig. 8. The performance in minimizing the belief entropy of different
strategies in the physical simulation experiment. 19 runs were performed.

robotics in two ways: first, addressing this challenge requires
the integration of many components, including an adequate
representation of information about the world, perceiving and
acting in the world, and performing efficient exploration.
While these components are usually developed and evaluated
in isolation, we believe that the progress in each of the
individual component can only be assessed in the context

of an integrated system. Second, by enabling a robot to
autonomously and effectively explore the world to achieve
a learning objective, we can lay the representational and
algorithmic foundation for autonomous skill acquisition in
robots.

Towards these goals, this paper introduced a novel way of
representing the world state, capable of handling uncertainty
about the existence of objects. Based on this representation,
we defined information theoretic exploration strategies. Our
experimental evaluation shows that simple exploration strate-
gies such as “random” and “round robin” show surprisingly
good results in the toy world. However, the behavior created
by information theory-based exploration strategies seems
more plausible: a newly discovered articulated object is more
interesting than a wall and invites further exploration before
it becomes boring.

In the more complex physical simulation, this behavior
also is able to explore a scene faster than the heuristics.
This suggests that for complex scenarios, strategies derived
from information theory and active learning will lead to
better performance. Further research is needed to strengthen
support for this statement.

Also, our research has its limitations. The actions the robot
can choose are limited and most properties of an object can
be learned reasonably well with only one interaction. In more



complex worlds, e.g., in worlds with coupled joints such as
doors with handles and locks, smarter exploration strategies
might be needed. Our hypothesis is that information theory-
based strategies could lead to more interesting behaviors and
better exploration in these kinds of scenarios. The “expected
change of entropy” exploration strategy already showed
promising results. This suggests that in complex worlds,
techniques from active learning could also yield better results
than naive and heuristic strategies.

The belief representation proved to be an important aspect
of the exploration challenge—especially the dependency of
the different random variables and the resulting entropy
measure—and should be investigated further. We showed that
comparing discrete and differential entropy is not straight
forward. Although in principle they are comparable, in
practice continuous distributions can carry more information
than discrete distributions. Thus we need a theory which can
handle this discrepancy.

We also want to further investigate how exploration strate-
gies might be task-driven, i.e., only the DOF important for
a specific task are explored, whereas irrelevant DOF should
be ignored. This also raises the question of how knowledge
from former exploration challenges can be translated during
new exploration challenges. This includes both transferring
knowledge between similar objects—doors, for example,
are very similar most of the time—as well as leveraging
experience to improve the exploration strategies themselves.
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