
A tutorial on Newton methods for constrained
trajectory optimization and relations to SLAM,

Gaussian Process smoothing, optimal control, and
probabilistic inference

Marc Toussaint

September 27, 2016

Abstract. Many state-of-the-art approaches to trajectory optimization and optimal control
are intimately related to standard Newton methods. For researchers that work in the inter-
sections of machine learning, robotics, control, and optimization, such relations are highly
relevant but sometimes hard to see across disciplines, due also to the different notations and
conventions used in the disciplines. The aim of this tutorial is to introduce to constrained
trajectory optimization in a manner that allows us to establish these relations. We consider a
basic but general formalization of the problem and discuss the structure of Newton steps in
this setting. The computation of Newton steps can then be related to dynamic programming,
establishing relations to DDP, iLQG, and AICO. We can also clarify how inverting a banded
symmetric matrix is related to dynamic programming as well as message passing in Markov
chains and factor graphs. Further, for a machine learner, path optimization and Gaussian Pro-
cesses seem intuitively related problems. We establish such a relation and show how to solve
a Gaussian Process-regularized path optimization problem efficiently. Further topics include
how to derive an optimal controller around the path, model predictive control in constrained
k-order control processes, and the pullback metric interpretation of the Gauss-Newton ap-
proximation.

1 Introduction

It is hard to track down explicitly when Newton methods were first used for trajectory
optimization. As the method is centuries old it seems fair to assume that they were used
from the very beginning. More recent surveys, such as (Betts, 1998; Von Stryk and Bulirsch,
1992), take Newton methods and standard non-linear constrained mathematical program-
ming (NLP) methods as granted. Betts (1998) for instance states that Newton methods were
the standard in the 60’s, often executed analytically by hand. Presumably the Apollo mis-
sions relied on Newton methods to compute paths. In the 70’s, with raising computational
powers and quasi-Newton methods (such as BFGS), they became prevalent for many kinds
of control problems.

1

Why do we need, half a century later, a tutorial on Newton methods for trajectory opti-
mization? Especially in the last decade the fields of machine learning, AI, robotics, opti-
mization and control became more and more intertwined, with methods of one discipline
fertilizing ideas or complementing methods in another. This often leads to great advances
in the fields. However, the interrelations between methods in the different fields are some-
times hard to see and acknowledge because the languages differs, textbooks are not cross-
disciplinary, and technical papers cannot focus on length on this.

Many interesting novel approaches to trajectory optimization have been proposed in the
last decade. However, identifying and relating the actual state-of-the-art across disciplines
is hard. An excellent and very necessary paper in the robotics community (TrajOpt; Schul-
man et al., 2013), proposing non-linear mathematical programming (NLP) for trajectory
optimization, might in other communities perhaps have been located decades earlier. That
paper is in fact an important answer on previous papers within robotics, esp. (CHOMP;
Ratliff et al., 2009), that have not compared to the NLP view on trajectory optimization. To
comment also on own work, the Approximate Inference approach to Trajectory Optimiza-
tion (AICO; Toussaint, 2009a) establishes important relations between iterative message
passing and trajectory optimization (see below) and still inspires great advances in the field
(Dong et al., 2016). But the optimization view on the same problem formulation leads to
basic Newton methods that can more easily be extended to hard constraints and are more
robust in practice. Similarly, it seems important to acknowledge the tight relations between
the optimal control approaches DDP (Mayne, 1966) and iLQG (Todorov and Li, 2005) and
plain (Gauss-) Newton methods, as discussed in more detail below.

In this tutorial we take the stand that such methods and especially their relations are best
understood by considering optimization as their common underlying foundation, in par-
ticular the Newton method. With this we hope to give a basis for fertilization and under-
standing across disciplines.

What is proposed in this tutorial is not fundamentally novel: We discuss basic Newton
and NLP methods for a general problem formulation, including also control and model
predictive control around the optimum. However, some specifics of the presentation are
novel, for instance:

(i) The specific k-order path optimization formulation is in contrast to the more common
phase-space formulation of path problems. This, and the banded problem Jacobians and
Hessians were previously mentioned in (Toussaint, 2014b).
(ii) The particular generalization of dynamic programming and model-predictive control
to constrained k-order processes are, to our knowledge, novel. Also the related approxi-
mate constrained Linear-Quadratic Regulator (acLQR) around an optimal path has, to our
knowledge, not been described in this form before. Related work is (Tassa et al., 2014).
(iii) The intimate relations between Newton-based trajectory optimization and Graph-SLAM
have only very recently been mentioned (Dong et al., 2016); the recast of CHOMP as plain
Newton that drops some terms seems novel.
(iv) Dong et al. (2016) also introduced the interesting idea to consider global-scale Gaussian
Process smoothness priors over paths and utilize GTSAM to optimize the resulting prob-
lem. Here we propose a simpler approach to account for “banded-support” covariance
kernels in the path objective with leads to linear-in-T complexity of computing Newton
steps.
(v) Throughout the paper we discuss complexities of computing the Newton steps, which
has not been presented in this way before.

2

1.1 Structure of this tutorial

Although the material presented is closely related to optimal control, we think it is insight-
ful for this tutorial to first consider a pure trajectory optimization perspective. Controls
and optimal control are not mentioned until Section 4. With this we aim to show how
much we can learn about the structure of Newton-based path optimization that then re-
lates intimately to optimal control methods.

Hence, in the first part, we formulate a path optimization problem of a particular k-order
structure. Section 2.3 discusses the resulting banded structures of the problem Jacobian
and Hessian and based on this derives the complexities of computing Newton steps. These
basic properties of the Jacobian, Hessian and the computation of Newton steps seem tech-
nical, but they are the core to understand the relations discussed later. For instance, this
allows us to understand relations to the pullback of Riemannian metrics in differential ge-
ometry, to Graph-SLAM methods, and to the CHOMP optimization method.

Section 3 asks how we can incorporate a more global smoothness objective in the opti-
mization formulation. We briefly consider a B-spline representation of paths, which are
intuitively very promising to enforce smoothness and speed up optimization. However,
in practice they hardly reduce the number of Newton steps needed and the complexity of
each Newton step is equal to non-spline representations. We then consider an alternative
way to include more global smoothness objectives: with a covariance kernel function as
in Gaussian Processes (GPs), efficiently optimizing the neg-log probability of a GP with a
banded kernel function.

Section 4 then reconsiders the problem from an optimal control perspective. We first briefly
introduce the basic optimal control framework and discuss direct vs. indirect approaches.
To tackle our specific k-order path optimization problem we then consider dynamic pro-
gramming to compute cost-to-go functions under hard constraints and the respective ap-
proximate constrained Linear Quadratic Regulator, which, just for sanity, is shown to be
equivalent to the Riccati equation in the unconstrained LQR case. We extend the dynamic
programming formulation to a model predictive control (MPC) formulation (in fact, a con-
strained k-order version of MPC) that allows to control around pre-optimized trajectories.
Moving to the probabilistic setting the relations to DDP, iLQG and AICO become clear. On
the conceptual level, this section establishes the relations between (i) inverting a banded
Hessian (in a Newton step), (ii) dynamic programming and (iii) probabilistic message pass-
ing, all three of them making the linear-in-T complexity of computing Newton steps ex-
plicit.

2 k-order Path Optimization and its Structure

2.1 Problem formulation: k-order constrained path optimization (KOMO)

Let x ∈ RT×n be the path1 of T time steps in an n-dimensional configuration space X . That
is, in the dynamic case, xt does not include velocities and x is not a state space (or phase
space) trajectory. Instead, x only represents a series of configurations.

1We use the words path and trajectory interchangeably: we always think of a path as a mapping [0, T] → Rn,
including its temporal profile.

3

prefix

Figure 1: Illustration of the structure implied by the k-order Markov Assumption (Eq. 2)

A general non-linear program over a path x is of the form

min
x
f(x) s.t. g(x) ≤ 0 , h(x) = 0 , (1)

where f : RT×n → R is a scalar objective function, g : RT×n → Rdg defines dg inequality
constraint functions, and h : RT×n → Rdh defines dh equality constraint functions. We
generally assume f , g, and h to be smooth, but not necessarily convex or unimodal.

For the case of path optimization we make the following assumption:
Assumption 1 (k-order Markov Assumption). We assume

f(x) =

T∑
t=1

ft(xt−k:t) , g(x) =

T⊗
t=1

gt(xt−k:t) , h(x) =

T⊗
t=1

ht(xt−k:t) , (2)

for a given prefix xk-1:0, where each ft is scalar, gt is dgt-dimensional, and ht is dht-dimensional.

Here we use the tuple notation xt−k:t = (xt−k, xt−k+1, .., xt). The prefix xk-1:0 are the robot
configurations before the path; assuming this to be known simplifies the notation, without
the need to introduce a special notation for the first k terms. The outer product

⊗
notation

means that the constraint functions gt of each time step are stacked to become the full
(dg =

∑
t dgt)-dimensional constraint function g over the full path. Under this assumption,

we define our problem as

Definition 1 (k-order Motion Optimization (KOMO; Toussaint, 2014b)).

min
x

T∑
t=1

ft(xt−k:t) s.t. ∀Tt=1 : gt(xt−k:t) ≤ 0 , ht(xt−k:t) = 0 . (3)

Figure 1 illustrates the structure implied by the k-order Markov Assumption: Tuples xt−k:t
of k + 1 consecutive variables are coupled by the objectives and constraints

φt(xt−k:t)
∆=

ft(xt−k:t)
gt(xt−k:t)
ht(xt−k:t)

 . (4)

We call these φt(xt−k:t) ∈ R1+dgt+dht the features at time t, encompassing cost, inequality,
and equality features. In Fig. 1, the coupling features φt(xt−k:t) are represented by the
boxes. The graphical notation is used in analogy to factor graphs and conditional random
fields (CRFs) (Kschischang et al., 2001; Lafferty et al., 2001), helping us to discus these
relations already on the level of the problem formulation.

4

The structure of CRFs is typically captured in the form

P (y|x) =
1

Z(x, β)
exp{

∑
i

φ̃i(y∂i, x)>βi} , (5)

where φ̃i(y∂i, x) are features that couple the input x to a tuple y∂i of output variables.2 These
features capture the structure of the output distribution P (y|x). Going back to path opti-
mization, in our case the features φt(xt−k:t) not only encompass costs, but also inequality
and equality constraints. As plain path optimization is not a learning problem, we have no
global model parameters β. However, as a side note, in the case of inverse optimal control
it is exactly the case that we want to parameterize an unknown path cost function and learn
it from data—which can be done exactly by introducing parameters β that weight potential
cost features, as in CRFs (Englert and Toussaint, 2015).

2.2 Background on basic constrained optimization

The field of optimization has developed a large amount of methods for non-linear programming—
see (Nocedal and Wright, 2006) for an excellent introduction. These existing methods are
highly relevant also in the context of path optimization. We cannot review in detail the
material here. Instead we summarize, in a very subjective nutshell, a few essential insights
from the field of optimization as follows:

(i) The core two issues in unconstrained optimization are stepsize and step direction.
(ii) Concerning stepsize, solid adaptation schemes with guarantees are line search, back-
tracking, Wolfe conditions, and trust regions.
(iii) Concerning step direction, the Newton direction is the golden standard. If Hessians
are not readily available, try to approximate them (quasi-Newton methods, BFGS) or at
least account for correlations of gradients or the search space metric (conjugate gradient,
natural gradient). Never use plain gradients or even black-box sampling if there is a chance
to be more informed towards Newton directions. The Hessian represents the structure of
the problem, analogous to graphical models and factor graphs (see below)—and efficiency
requires to exploit such structure.
(iv) There are various ways to address constrained programs by solving a series of un-
constrained problems, in particular: log-barrier (interior point), primal-dual-Newton, aug-
mented Lagrangian, and sequential quadratic programming (SQP). If done properly, each
of these approaches might lead to comparable performance and the best choice depends
on the specifics of the application. Arguably, this choice is less relevant than the previous
two points.

As a consequence, in the case of path optimization we need to discuss especially the struc-
ture of the problem, that is, the structure of the Hessian. This will be a central topic of this
tutorial, and we will discuss how this structure relates to factor graphs and graphical mod-
els, and how exploitation of this structure in terms of the respective linear algebra methods
is analogous or equivalent to message passing or dynamic programming in such graphical
models.

2∂i denotes the neighborhood of feature i in the bipartite graph of features and variables; and thereby indexes
the tuple of variables on which the ith feature depends.

5

In the case of unconstrained optimization (dg = dh = 0), we could directly consider the
structure of Newton steps

−∇2f(x)-1 ∇f(x) (6)

under our assumptions. However, as we are concerned with a constrained problem we
first want to recap standard approaches to constrained optimization and discuss what the
implication of these approaches is w.r.t. the structure of the resulting Newton steps. We
focus on sequential quadratic programming (SQP) and the augmented Lagrangian (AuLa)
method, and only briefly mention standard log barrier and primal-dual Newton methods.

The Newton method steps, in every iteration, towards the optimum of a local 2nd-order
Taylor approximation of f(x). Sequential Quadratic Programming (SQP, see (Nocedal and
Wright, 2006) for details) is a direct generalization of this: In every iteration we step to-
wards the optimum of a local Taylor approximation of the original constrained problem
(1). Concretely, we compute the local 2nd-order Taylor of the objective,

f(x+ δ) ≈ f(x) +∇f(x)>δ +
1

2
δ>∇2f(x)δ , (7)

and the local 1st-order Taylor of the constraints,

g(x+ δ) ≈ g(x) +∇g(x)>δ , h(x+ δ) ≈ h(x) +∇h(x)>δ . (8)

This defines the sub-problem

min
δ

f(x) +∇f(x)>δ +
1

2
δ>∇2f(x)δ s.t. g(x) +∇g(x)>δ ≤ 0 , h(x) +∇h(x)>δ = 0 ,

(9)

which can be solved with a standard Quadratic Programming solver. In a robotics context,
the computation of the terms ∇f(x),∇2f(x),∇g(x),∇h(x) is typically expensive, requiring
to query kinematics, dynamics and collision models; but once these terms are computed lo-
cally at x, the sub-problem of computing δ∗ considers these as constant and does not require
further queries. The dimensionality of the sub-problem (9) is though still the same as that
of (1). As in ordinary Newton methods, the optimal δ∗ only defines a good search direction
and we need to backtrack until we found a point that decreases f sufficiently (Wolfe con-
dition) and that is feasible—these criteria again require the real kinematics, dynamics and
collision models to be queried.

As a general conclusion, an optimizer should try to reduce the number of queries as mush
as possible by putting much effort in deciding on a good step direction and stepsize. SQP
does so by solving the QP (9).

SQP became a standard in robotics. However, we want to also highlight another method
that is not as frequently mentioned in the robotics context and not well documented for the
inequality case: the augmented Lagrangian (AuLa) method (Conn et al., 1991; Toussaint,
2014a). The method is simple and effective. First consider an imprecise but common prac-
tice to handle constraints, namely by adding squared penalty terms. Instead of solving (1)
we address

F (x) = f(x) + ν
∑
j

hj(x)2 + µ
∑
i

[gi(x) > 0] gi(x)2 , (10)

6

which adds squared penalties if constraints are violated.3 F (x) can be efficiently mini-
mized by a standard Gauss-Newton method, which approximates the Hessian of F (x) by
∇2F (x) ≈ ∇2f(x) + ν

∑
j ∇hj(x)∇hj(x)>+ µ

∑
i[gi(x) > 0] ∇gi(x)∇gi(x)>.

Because the squared penalties are flat at hj = 0 and gi = 0, minimizing F (x) will lead to
constraint violations for the critical (active) constraints. The amount of violation could be
controlled by increasing ν and µ. However, there is a very elegant alternative: from the
amount of violation we can guess Lagrange parameters that, in the next iteration, push out
of constraint violations and “should” lead to satisfied constraints. Concretely, we define
the augmented Lagrangian as

L̂(x) = f(x) +
∑
j

κjhj(x) +
∑
i

λigi(x) + ν
∑
j

hj(x)2 + µ
∑
i

[gi(x) > 0] gi(x)2 , (11)

which includes both, squared penalties and Lagrange terms.

In the first iteration, κ = λ = 0 and L̂(x) = F (x). We compute x′ = minx L̂(x), and then
reassign Lagrange parameters using the AuLa updates4

κj ← κj + 2νhj(x
′) , λi ← max(λi + 2µgi(x

′), 0). (12)

Note that 2νhj(x
′) is the force (gradient) of the equality penalty at x′, and max(λi+2µgi(x

′), 0)

is the force of the inequality constraint at x′. What this update does is it considers the forces
exerted by the penalties, and translates them to forces exerted by the Lagrange terms in the
next iteration. This tries to trade the penalizations for the Lagrange terms. It is straight-
forward to prove that, if f, g and h are linear and the same constraints are active in two
consecutive iterations, the AuLa update (12) assigns “correct” Lagrange parameters, all
penalty terms are zero in the second iteration, and therefore the solution fulfills the first
KKT condition after one iteration (Toussaint, 2014a). The convergence behavior and effi-
ciency is, in practice, very similar to the simple and imprecise squared penalty approach,
while it leads to precise constraint handling. Unlike SQP it does not need a QP solver for
the sub-problems, but only a robust Gauss-Newton method on L̂(x). For reference, we
include a basic robust Newton method in Table 1.

SQP and AuLa are excellent choices for constrained path optimization also because in prac-
tice they can be made rather robust against numerically imprecise and non-smooth objec-
tive and constraint functions. For instance, the distance between two convex 3D polyhedra
is a continuous but only piece-wise smooth function; the gradients and Hessian discon-
tinuously depend on what are the closest points on the polyhedra. Levenberg-Marquardt
damping and the Wolfe conditions help to make standard Newton methods still lead to
efficient monotone decrease. The log barrier method is an approach to constrained opti-
mization that, in our experience, interferes non-robustly with such imprecisions of con-
straint gradients—presumably because of the extreme conditioning of the barrier functions
at convergence.

Primal-dual Newton methods are an equally strong candidate for path optimization as
SQP and AuLa, as they share many structural aspects. The primal and dual variables are
updated conjointly using Newton steps. Thereby we can equally exploit the structure of
the Hessian as we will discuss it in the following. However, for the sake of brevity we do
not go into more details of primal-dual Newton methods.

3[expr] is the indicator function of a boolean expression.
4There is little literature on the AuLa updates to handle inequalities. The update rule described here is men-

tioned in by-passing in (Nocedal and Wright, 2006); a more elaborate, any-time update that does not strictly
require x′ = minx L̂(x) is derived in (Toussaint, 2014a), which also discusses more literature on AuLa.

7

Input: initial x ∈ Rn, functions f(x),∇f(x),∇2f(x), tolerance θ, parameters (defaults:
%+α = 1.2, %−α = 0.5, %+λ = 1, %−λ = 0.5, %ls = 0.01)

Output: x
1: initialize stepsize α = 1 and damping λ = λ0
2: repeat
3: compute d to solve [∇2f(x) + λI] d = −∇f(x)

if [∇2f(x) + λI] is not positive definite, increase λ← 2λ− σmin
4: while f(x+ αd) > f(x) + %ls∇f(x)>(αd) do // line search
5: α← %−αα // decrease stepsize
6: optionally: λ← %+λ λ and recompute d // increase damping
7: end while
8: x← x+ αd // step is accepted
9: α← min{%+αα, 1} // increase stepsize

10: optionally: λ← %−λ λ // decrease damping
11: until ||αd||∞ < θ

Table 1: A basic robust Newton method. Line 3 computes the Newton step d =

−∇2f(x)-1∇f(x); in practice, e.g., use the Lapack routine dposv to solve Ax = b using
Cholesky. The parameter λ controls the Levenberg-Marquardt damping, being dual to
trust region methods, and makes the parabola steeper around current x.

2.3 The structure of the Jacobian and Hessian

We can summarize the previous section by observing that AuLa requires to compute New-
ton steps of L̂(x),

−
[
∇2f(x) + ν

∑
j

∇hj(x)∇hj(x)>+ µ
∑
i

[gi(x) > 0] ∇gi(x)∇gi(x)>
]-1

(∇f(x) + (κ+ 2ν)>∇h(x) + (λ+ 2µI[gi(x)>0])
>∇g(x)) , (13)

and SQP will apply Newton steps in one or another way to solve the sub-problem (9),
which structurally will involve the same or similar terms as in (13). The efficiency of both
approaches hinges on how efficiently we can compute such Newton steps, and this de-
pends on the structure of the bracket term.

Going back to our k-order Markov Assumption (2), the Jacobian of the features

φ(x) =

T⊗
t=1

φt(xt−k:t) , J(x) =
∂φ(x)

∂x
(14)

reflects the factor graph structure illustrated in Fig. 1. Namely, Fig. 2 shows that the Jaco-
bian is composed of blocks of rows, each one corresponding to a time t, which are non-zero
only for those columns that correspond to the tuple xt−k:t. Storing the dense Jacobian
would require a Tn× (T + dg + dh)-dimensional matrix with many zeros. A more natural
storage of such a matrix is a row-shifted packing, which clips all the leading zeros of a row
(shifting them to the left) and stores the number of zeros clipped. This leads to a matrix of
at most (k+1)n non-zero columns. Trivially we have:

Lemma 1. If A is a row-shifted matrix of width l, the product A>A is a banded symmetric matrix
of band width 2l − 1.

Proof. Let si be the shift (number of clipped zeros) of the ith row of A. Let B = A>A. We

8

Figure 2: Structure of the Jacobian and Hessian, illustrated for k = 2.

have

Bij =

n∑
t=1

AtiAtj =

n∑
t=1

AtiAtj [st ≤ i < st + l][st ≤ j < st + l] . (15)

If |i−j| ≥ l, then i and j can never be in the same interval [st, st+ l), andBij = 0. Therefore
B has a band width of 2l − 1.

In (13) the constraints contribute to the approximate Hessian with terms∇hj(x)∇hj(x)>and
∇gj(x)∇gj(x)>. Therefore:

Corollary 2. Under the k-order Markov Assumption, the matrix J(x)>J(x) with J(x) = ∂φ(x)
∂x is

banded symmetric with width 2(k+1)n− 1.

The Hessian∇2f(x) of the cost features has the structure

∇2f(x) =

T∑
t=1

∇2ft(xt−k:t) . (16)

Each ∇2ft(xt−k:t) is a (k+1)n × (k+1)n block matrix, as illustrated in Fig. 2. The sum of
these block matrices is again banded symmetric and we have

Corollary 3. Under the k-order Markov Assumption, the Hessian ∇2f(x) is banded symmetric
with width 2(k+1)n− 1.

2.4 Computing Newton steps for banded symmetric Hessians

In the previous section we established the banded symmetric structure of the Hessian of
the augmented Lagrangian. Also when using SQP or other constrained optimization ap-
proaches, the Hessian for computing Newton steps in the sub-problems will have this
structure, and the efficiency of path optimization will crucially hinge on the efficiency of
computing these Newton steps. Specifically, we have:

Lemma 4. The complexity of computing Newton steps −A-1b for a banded symmetric A of band-
width 2l − 1 and b ∈ Rm is O(ml2).

9

Proof. Golub and Van Loan (2012) describes in Section 4.3.5 explicit Algorithms for comput-
ing the Cholesky decomposition of for banded symmetric matrices (Alg. 4.3.5) with com-
plexity O(ml2). Solving the remaining banded triangular system (Alg. 4.3.2) is O(ml).

As a side note, these algorithms are accessible in LAPACK as dpbsv, which internally first
computes the Cholesky decomposition using dpbtrf and then uses dpbtrs to solve the
remaining linear equation system.

Corollary 5. The complexity of computing Newton steps of the form [∇2f(x) + J(x)>J(x)]-1b (as
for the KOMO problem (3)) is O(Tk2n3).

We emphasize that the complexity is only linear in the number T of time steps.

2.5 Sum-of-square costs, Gauss-Newton methods, and the pullback of
features space metrics

The path cost terms ft(xt−k:t) are, in practice, often sums-of-squares. For instance, to get
smooth paths we might want to minimize squares of accelerations,

||xt + xt-2 − 2xt-1||2 .

In optimal control, we typically want to minimize ||u||2H which, using a local approximation
u = Mq̈ + F , implies cost terms

||M(xt + xt-2 − 2xt-1)/τ2 + F ||2H .

If H is Cholesky decomposed as H = A>A, this is the sum-of-squares of the features
f̂t(xt−k:t) = A[M(xt+xt-2−2xt-1)/τ2+F]. Given a kinematic map ψ : Rn → Rd (e.g., map-
ping to an endeffector position), we often want to penalize a squared error ||ψ(xt)−y∗t ||2Ct

to
a target yt with precision Ct. Again, with a Cholesky decomposition Ct = A>tAt, defining
f̂t(xt−k:t) = At[ψ(xt)− y∗t] renders this a sum-of-squares cost.

If all cost terms are sum-of-squares of features f̂t(xt−k:t) we have

f̂(x) ∆=
⊗T

t=1
f̂t(xt−k:t) (17)

f(x) =
∑T
t=1 f̂t(xt−k:t)

>f̂t(xt−k:t) = f̂(x)>f̂(x) (18)

∇f(x) = 2∇f̂(x)
>
f̂(x) (19)

∇2f(x) = 2∇f̂(x)
>
∇f̂(x) + 2f̂(x)>∇2f̂(x) . (20)

The Gauss-Newton method computes approximate Newton steps by replacing the full Hes-

sian ∇2f(x) with the approximation 2∇f̂(x)
>
∇f̂(x), that is, approximating ∇2f̂(x) ≈ 0.

Note that the pseudo Hessian 2∇f̂(x)
>
∇f̂(x) is always semi-positive definite. Therefore, no

problems arise with negative Hessian eigenvalues. The pseudo Hessian only requires the
first-order derivatives of the cost features. There is no need for computationally expensive
Hessians of features f̂t or kinematic maps.

It is interesting to add another interpretation of the Gauss-Newton approximation, see also
(Ratliff et al., 2015): The mapping f̂ : RTn → Rdf maps a path to a cost feature space.
We may think of both spaces as Riemannian manifolds and f̂ a differentiable map from
one manifold to the other. In the feature space, the cost f(x) is just the Euclidean norm

10

f̂(x)>f̂(x), which motivates us to think of the feature space as “flat” and define the Rie-
mannian metric in feature space to be the Euclidean metric. Now, what is a reasonable
metric to be defined on the path space? In differential geometry one defines the pullback of
a metric w.r.t. a differentiable map f̂ as

〈x, x′〉X =
〈
df̂(x), df̂(x′)

〉
Y

(21)

where df̂ is the differential of f̂ (a Rdf -valued 1-form) and 〈·, ·〉Y is a metric in the output
space of f̂ . In coordinates, and if 〈·, ·〉Y is Euclidean as in our case, we have

〈x, y〉X = ∇f̂(x)>∇f̂(x) (22)

and therefore, the pseudo Hessian 2∇f̂(x)
>
∇f̂(x) is the pullback of a Euclidean cost feature metric.

For instance, if some cost features f̂t penalize velocities in feature space, finding paths x
that minimize f(x) corresponds to computing geodesics in the configuration space w.r.t. the
pullback of a Euclidean feature space metric. If some cost features penalize accelerations
(or control costs, as above) in some feature space, the result are geodesics in the system’s
phase space w.r.t. a pullback metric.

2.6 Relation to Graph-SLAM methods

Simultaneous Localization and Mapping (SLAM) is closely related to path optimization.
Essentially the problem is to find a path of the camera that is consistent with the sensor
readings. Graph-SLAM (Folkesson and Christensen, 2004; Thrun and Montemerlo, 2006)
explicitly formulates this problem as an optimization problem on a graph.

Following the conventions of G2O (Kümmerle et al., 2011), the graph SLAM problem can
be reduced to the form

min
x

∑
(i,j)∈C

e(xi, xj , zij)
>Ωije(xi, xj , zij) , (23)

where e(xi, xj , zij) is a “vector-valued error function” that indicates the consistency of
states xi and xj with constraints zij . If we decompose the metric Ωij = A>ijAij and de-
fine fij(x) = Aije(xi, xj , zij), this becomes a standard structured sum-of-squares problem.
For k = 1, the KOMO problem (3) without constraints becomes a special case of (23), where
the graph is just a chain. G2O is a highly-efficient solver for general graph least squares
problems.

GTSAM (Dellaert, 2012) is another solver that allows for higher-order tuples of factors. It
adopts a probabilistic interpretation of the problem (as also discussed below), but targets at
computing the maximum-likelihood assignment of all random variables, which is equiva-
lent to optimization on a factor graph. Again, unconstrained KOMO is the special k-order
Markov case for such general least squares problems. Dong et al. (2016) exploit exactly
these relations. They demonstrate the efficiency of using GTSAM for motion optimization,
in addition to making the relation to Gaussian Processes (see below). As the approach fully
exploits the structure of the problem’s Hessian, the method is drastically more efficient as
compared to other methods.

As a final note, none of the above consider hard constraints as we have them in KOMO.
However, using, e.g., the AuLa methods it should not be hard to extend them to include
hard constraints.

11

2.7 Relation to CHOMP

Let me briefly recap the notion of a covariant gradient of an objective function f(x). The
plain partial derivative ∇f(x) is, strictly speaking, not a vector, but a co-vector. The direc-
tion of∇f(x) depends on the choice of coordinates. Related to this,∇f(x) only describes the
steepest descent direction w.r.t. a Euclidean metric. In general, the steepest descent direction
should be defined depending on the metric as

δ∗ = argmin
δ
∇f(x)>δ s.t. 〈δ, δ〉 = 1 .

Here we take a step of length one and check how much f(x) decreases in its linear approxi-
mation. The “length one” depends on the metric 〈·, ·〉. If, in given coordinates, the metric is
〈x, y〉 = x>Gy, with metric tensor G, then one can show that

δ∗ ∝ −G-1∇f(x) . (24)

It turns our that δ∗ is a proper (covariant) vector that does not depend on the choice of
coordinates. δ∗(x) is a covariant gradient of f(x), more precisely, it is the covariant gradient
w.r.t. the metric G. The Newton step is also a covariant vector: its direction is the covariant
gradient of f(x) w.r.t. the metric H(x), that is, the Hessian acts as the local metric.

Covariant gradient descent therefore utilizes a metric in X to make the partial derivative
become a covariant gradient. In the context of probability distributions, this metric is typi-
cally chosen to be the Fisher metric, also referred to as “natural gradient”.

CHOMP (Ratliff et al., 2009) chooses the Hessian of smoothing costs as the path metric, and
implements steepest descent (24) w.r.t. this metric. This is like a Newton step that drops
the Hessian of the other, non-smoothing cost terms. More concretely, as smoothing cost
terms CHOMP may, for instance, consider sum-of-squared accelerations

∑T
t=1 f

2
t with cost

features f̂t = xt + xt-2 − 2xt-1. The Hessian H = 2∇f̂>∇f̂ we established above is what
CHOMP takes a path metric. In that sense, KOMO or any other classical Newton method
generalize CHOMP to also include the Hessian of other cost terms in the Newton step.

However, this particular setting of CHOMP has the benefit that H (the Hessian of accel-
eration costs) is constant and sparse, making the linear algebra operations of computing
quasi-Newton steps fast. Very fast kinematics and collision evaluations (using precom-
puted distance fields and a set-of-capsules approximation of the robot) further contributed
to the performance and success of CHOMP.

3 Including more global Smoothness Objectives

Smoothness is a basic objective we have about robot motion. Typically, smoothness is im-
plied by minimizing accelerations, control costs, or jerk along a path. While these objectives
are local and comply with out local k-order Markov assumption, they still imply a form
global smoothness. E.g., it is well-known that B-splines minimize squared accelerations
subject to the knot constraints.

However, it is interesting to consider objectives that directly imply a form of global smooth-
ness. We have in particular Gaussian Processes in mind, where the kernel functions directly
defines the correlatedness of distal points and thereby the desired form of smoothness. We

12

will show below that such kind of smoothness objectives are not compliant with the k-order
Markov assumption, but propose ways to handle them anyway.

Before discussing Gaussian Process smoothness objectives we first consider spline encod-
ings of paths as a means to impose global smoothness.

3.1 Splines

Basis splines, or B-splines, are a simple way to reduce the dimensionality of the path rep-
resentation. First assume we want to represent a continuous 1D path x : [0, T] → R with
K+1 knots zk ∈ R, k = 0, ..,K. For a given degree p, let tk ∈ [0, T], k = 0, ..,K + p + 1 be
a series of increasing time steps associated with the knots.5 Then we can compute coeffi-
cients6 b(t) ∈ RK+1 such that x(t) = b(t)>z. Therefore, x(t) is linear in the spline parameters
z.

We previously defined x ∈ RT×n to be a discrete time path in n-dimensional configuration
space. In this case we can compute once the discrete time spline basis matrix B̄ ∈ RT+1×K+1

with Bt· = b(t/T) and then can represent

x̄ = B̄z̄ , (26)

with spline parameters z ∈ RK×n. Here, x̄ = x0:T and z̄ = z0:K include the given start
configuration x0 = z0 ∈ Rn. To match better with the previous sections’ notation we
rewrite this as

x = Bz + bx>0 , (27)

where B = B̄1:T,1:K and b = B1:T,0.

In conclusion, spline representations provide a simple linear re-representation of paths. In
the spline representation, the feature Jacobian and Hessian are

Jz = JxB (28)

Hz = B>HxB , (29)

where Jx andHx are the feature Jacobian and Hessian in the original path space.7 Note that
the spline basis matrix is also structured in a “banded”, or row-shifted, manner, similar to
the feature Jacobian. Namely,

b(t)k 6= 0 ⇒ tk ≤ t ≤ tk+p+1 (30)

Btk 6= 0 ⇒ T (k − p)
K + 1− p

≤ t ≤ T (k+1)

K + 1− p
(31)

5The time steps can, e.g., be chosen “uniformly” within [0, T], tk = T

0 k ≤ p
1 k ≥ K+1
k−p

K+1−p otherwise

,

which also assigns t0:p = 0 and tK+1:K+p+1 = T , ensuring that x0 = z0 and xT = zK .
6The coefficients can be computed recursively. We initialize b0k(t) = [tk ≤ t < tk+1] and then compute

recursively for d = 1, .., p

bdk(t) =
t− tk

tk+d − tk
bd-1
k (t) +

tk+d+1 − t
tk+d+1 − tt+1

bd-1
k-1(t) , (25)

up to the desired degree p, to get b(t) ≡ bp0:K(t).
7As x is a matrix, Jx is, strictly speaking, a tensor and the above equations are tensor equations in which the t

index of B binds to only one index of Jx and Hx.

13

⇔ (K + 1− p) t/T − 1 ≤ k ≤ (K + 1− p) t/T + p . (32)

So the non-zero width of each row is p + 2, and the non-zero height of each column is
T (p+ 2)/(K + 1− p).

Corollary 6. In a spline representation of degree p, the Hessian B>HxB has bandwidth O(kpn).

It is imperative to exploit this kind of sparsity of the spline basis matrix to ensure that the
complexity of the matrix multiplication JxB in (28) is only O(dknp) (recall, d is the number
of features) instead of O(dTnK). Equally, computing HxB in (29) is O(Tn2kp).

Now, does such a lower-dimensional spline representation of paths speed up Newton
methods? We first note

Corollary 7. The computational complexity of computing Jz is O(dknp), of Hz is O(Tn2kp), of a
Newton step H -1

z z is O(Kn(kpn)2).

Overall, the complexity w.r.t. T is dominated by the computation of Jz and Hz and gives
O(T); and w.r.t. n, k it is dominated by the Newton step giving O(k2n3). Both are exactly
as for the original Newton step without spline representation. Note that also line search
steps (e.g., checking the Wolfe condition) is O(T) in both representations as the whole path
needs to be evaluated.

If the complexity of computing Newton steps is not reduced in the spline representation,
perhaps we need less iterations? We first note that Newton steps are covariant, that is,
their direction is invariant under coordinate transforms. Therefore, if B would have full
rank, the Newton steps are identical. Performing Newton steps on a lower-dimensional
linear projection B is the same as projecting the high-dimensional Newton steps onto the
low-dimensional hyperplane. There is no a priori reason for why this should lead to less
iterations.

In conclusion, optimizing on a low-dimensional spline representation of the path does not
necessarily lead to more efficient optimization. Empirically we often find that more New-
ton iterations are needed in a spline representation where the found path is less optimal.

Nevertheless, splines are a standard approach in path optimization. Perhaps the real moti-
vation for using splines in practice is that they impose a large-scale smoothness on the so-
lution which cannot efficiently be captured by cost features on k+1-tuples xt:t+k. However,
let us consider alternative approaches to large-scale smoothness in the following section.

3.2 Covariance smoothness objectives & Gaussian Process priors

The k-order Markov structure allows us to express smoothness objectives in terms of cost
features over the kth path derivatives. Such local smoothness objectives are different to
global smoothness constraints as implied by spline projections, or the kind of smoothness
implied by Gaussian Process (GP) priors.

Considering the latter, for discretized time, a GP is nothing but a joint Gaussian over all
path points. For instance, a GP represents the prior

P (x) = N(x | 0,K) ∝ exp{−1

2
x>K -1x} , Kts = k(t, s) , (33)

where the kernel function k(t, s) is the correlation between the configurations xt and xs at
two different times t and s. A typical kernel function used in GPs is the squared exponential

14

Figure 3: Left: The 20×20 covariance matrixKij = exp{−((i−j)/3)2} (zero=white). Right:
its inverse (precision matrix) K -1 (zero=gray).

kernel k(t, s) = exp{−(t − s)2/σ2} for some band width σ. Fig. 3(left) illustrates such a
covariance matrix K in gray shading.

In our optimization context, such a GP prior translates to neg-log-probability costs, namely

− logP (x) ∝ 1

2
x>K -1x . (34)

Note the matrix inversion here! Fig. 3(right) illustrates the matrix K -1, which turns out to
be in no way ’local’ or banded. This precision matrix K -1 plays the role of a Hessian in the
cost formulation. The checker board structure can vaguely be understood as penalizing
derivatives of the path. The rather surprising non-local structure of K -1 clearly breaks our
k-order Markov assumption. However, it turns out that we can still compute Newton steps
efficiently, in a manner that exploits the structure of K. To derive this, let us more formally
define the generalized problem as

Definition 2 (Covariance regularized KOMO (CoKOMO)).

min
x

∑
t

ft(xt−k:t) +
1

2
x>K -1x s.t. ∀t : gt(xt−k:t) ≤ 0 , ht(xt−k:t) = 0 (35)

We define, as before, H =
∑
t∇2ft as the Hessian of the cost features, or H = ∇f̂>∇f̂ in the

Gauss-Newton case. The system’s full Hessian is H +K -1. Therefore

Corollary 8. In CoKOMO, for a finite-support kernel, the total Hessian H̄ = H +K -1 is a sum of
a banded matrix H and the inverse of a banded matrix K.

Computing a Newton step of the form −H̄ -1g for some g8 can be tackled as follows

(H +K -1)-1g = K(HK + I)-1g . (36)

Note that, ifH andK are both banded, then (HK+I) is banded and computing (HK+I)-1g

is, exactly as before, O(Tnb2) if b is the bandwidth of HK. We have

Lemma 9. IfH is of semi-bandwidth h (that is, total bandwidth 2h−1) andK is of semi-bandwidth
c, then HK is of semi-bandwidth h+ c.

8In the AuLa case, g = ∇L̂(x), see Eq. (12). In the SQP case, the inner loop for solving the QP (9) would
compute Newton steps w.r.t. the Hessian H̄ .

15

Proof.

(HK)ij =
∑
k

HikKkj =
∑
k

[−h ≤ i− k ≤ h][−c ≤ j − k ≤ c] HikKkj (37)

= [−h− c ≤ i− j ≤ h+ c]
∑
k

HikKkj . (38)

Corollary 10. Under the k-order Markov Assumption and including a banded covariance regular-
ization of semi-bandwidth cn, the complexity of computing Newton steps of the form−(H+K -1)-1g

is O(T (k + c)2n3).

This is in comparison to the O(Tk2n3) without the covariance regularization. We assumed
a semi-bandwidth cn for K to account for the dimensionality of each xt ∈ Rn.

As a side note, the Woodbury identity and rank-one update (Sherman-Morrison formula)
provide alternatives ideas to handle terms like (H +K -1)-1, namely

(H +K -1)-1 = K − (I +KH)-1KHK (39)

(vv>+K -1)-1 = K − Kvv>K

1 + v>Kv
. (40)

The first line (Woodbury) involves only banded matrices, but seems less efficient than (36).
The second line (Sherman-Morrison) provides a way to recursively compute (H +K -1)-1 as
a series of rank-one updates if H =

∑
i viv

>
i—as is exactly the case in the Gauss-Newton

approximation H ≈ 2∇f̂>∇f̂ . Again, all computations only rely on multiplication with
banded matrices.

4 The optimal control perspective

So far we have not mentioned controls at all. However, path optimization and KOMO are
intimately related to standard optimal control methods. The aim of this section is two-fold,
namely to clarify these relations as well as to derive algorithms for controlling a system
around an optimal path.

Our starting point will be the discussion of an alternative solution approach to our op-
timization problem: a dynamic programming perspective on solving the general KOMO
problem (3). This will be rather straight-forward, adapting Bellman’s equation to the k-
order constrained case, and leads to an optimal regulator around the path. This though
leads to many insights:

(i) Using a 2nd-order approximation of all terms, the backward equation can be used to
compute a Newton step—which now very explicitly shows the linear-in-T complexity of
computing Newton steps and gives interesting insights in how the inversion of a banded
symmetric matrix is related to dynamic programming on Markov chains.
(ii) Assuming a k = 1-order linear-quadratic control process, the 2nd-order approximate
backward equation coincides with the Riccati equation. This gives insights in the tight
interrelations between DDP, iLQG and Newton methods.
(iii) Moving to a probabilistic interpretation of the objective function we can connect to
the recent work on using probabilistic inference methods for optimal control (Rawlik et al.,

16

2012). In particular, backward and forward dynamic programming in our KOMO problem
become equivalent to backward and forward message passing in Markov chains. Based on
this we can point to the relations with path integral control methods, AICO, Ψ-learning,
Expectation Maximization and eNAC that are detailed in (Rawlik et al., 2012).

4.1 Background on basic optimal control

Let us first recap the basic formulation of optimal control problems. In the discrete time
setting, we consider a controlled system xt+1 = f(xt, ut) and aim to minimize

min
x,u

∑T
t=1 ct(xt, ut) s.t. xt+1 = f(xt, ut) . (41)

Here we optimize over both, the state path x = x1:T and the control path u = u1:T . Both are
of course related by the system dynamics. Given a control path u we can compute the state
path x = F (u) as a function of the start state and the controls by iterating the dynamics
f(xt, ut). The control problem can be recast as

min
u

∑T
t=1 ct(F (u)t, ut) , (42)

and is typically solved by iteratively finding a better control path u (e.g. by a Newton
step on u, or by dynamic programming, see below) and then recomputing the state path
x = F (u). This is called indirect method or multiple shooting. DDP and iLQG, which we
discuss below, are such indirect methods.

This is in contrast to direct methods which instead consider x to be the optimization vari-
able. Roughly, let u(xt, xt+1) be the control needed to transition from xt to xt+1. In non-
holonomic systems, where not all transitions are feasible, let h(xt, xt+1) = 0 express an
equality constraint that ensures the existence of a control signal u(xt, xt+1). Then the prob-
lem can be recast as

min
x

∑T
t=1 ct(xt, u(xt, xt+1)) s.t. h(xt, xt+1) = 0 . (43)

Such direct methods eliminate the controls from the problem. Our KOMO formulation is
therefore a direct method.

The dynamic programming approach to solving such problems is to define the optimal cost-
to-go function (or value function). In the indirect view (see below for the Bellman equation
in the direct view) we define

Vt(x) = min
ut:T

∑T
s=t cs(xs, us) , (44)

which, for every possible xt = x, computes the optimal (minimal) cost for the remaining
path. Bellman’s optimality equation can be derived by separating out the optimization
over the next control ut,

Vt(x) = min
ut

[
ct(x, ut) + min

ut+1:T

∑T
s=t+1 cs(xs, us)

]
(45)

= min
ut

[
ct(x, ut) + Vt+1(f(x, ut))

]
. (46)

In a nutshell, the core implications of Bellman’s equation are

17

(i) In principle we can compute all Vt recursively, iterating backward from VT+1 ≡ 0 to V1
using equation (46). To retrieve the optimal control path u and state path x we then iterate
forward

ut = argmin
ut

[
ct(xt, ut) + Vt+1(f(x, ut))

]
, xt+1 = f(xt, ut) , (47)

starting from the start state x1. This forward iteration is called shooting. Therefore, if we
can compute all Vt exactly, we can solve the optimization problem.
(ii) In the LQ case, where f(x, u) = Ax + Bu is linear and c(x, u) = x>Qx + u>Hu is
quadratic, all cost-to-go functions are quadratic of the form Vt(x) = x>V̂tx and the mini-
mization in the Bellman equation (46) is analytically given by the Riccati equation

V̂t = Q+A>[V̂t+1 − V̂t+1B(H +B>V̂t+1B)-1B>V̂t+1]A , V̂T+1 = 0 . (48)

Given we computed all V̂t, the optimal controls for forward shooting (47) are

ut = (H +B>V̂t+1B)-1B>V̂t+1Axt , (49)

which is call the Linear Quadratic Regulator. The fact that we have this optimal regulator
defined globally for all possible xt adds a fully new perspective: We can not only use it
for forward shooting to find the optimal path, but we can also use it during execution as a
controller to react to perturbations of our system from the planned path.
(iii) The LQ case is the analogy to the 2nd-order Taylor approximation of a non-linear ob-
jective function: To solve a non-LQ control problem one typically starts with an initial path
x, approximates the dynamics and costs to 1st- or 2nd-order around x, and then solves this
locally approximate problem to yield a new, better path x. There are some alternatives on
how to do this in detail:

• If we approximate all terms exactly up to 2nd-order, compute all Vt in (46) and also
use this second order approximation for the forward shooting (47), then this is exactly
equivalent to a Newton step on the path optimization problem: We approximated all
terms up to 2nd order and found the minimum of that local approximation. However,
this is not what typical control methods do:

• If we use 2nd-order approximations to compute all Vt in (46), but then the true non-
linear dynamics for forward shooting in (47), this is referred to as Differential Dynamic
Programming (usually formulated in continuous time) (DDP; Mayne, 1966).

• If we use an LQ-approximation (which neglects the dynamic’s Hessian) to compute
all Vt using the Riccati equation, but then the true non-linear dynamics for forward
shooting in (47), this is referred to as iterative LQG (iLQG; Todorov and Li, 2005).

Both, DDP and iLQG have additional details on how exactly to ensure convergence, analo-
gous to Levenberg-Marquardt damping and backtracking in a robust Newton method. The
fine difference to Newton’s method has its origin in the fact that they are indirect methods,
and therefore can use the exact non-linear dynamics in the forward shooting (Liao and
Shoemaker, 1992). For very non-linear systems this may be beneficial (Todorov and Li,
2005).
In all three cases, the computed Vt in principle define a linear regulator around the path,
which, however, does not guarantee to keep the system close to the state region where
the local approximation is viable. This can be addressed using Model Predictive Control
(MPC) as discussed below.

With this background, let us first discuss a (direct) dynamic programming approach to
solve the KOMO problem, and then compare to standard LQG, DDP and iLQG methods.

18

4.2 k-order constrained Dynamic Programming and Constrained LQR
Control

For easier reference we restate the general KOMO problem (3),

min
x

T∑
t=1

ft(xt−k:t) s.t. ∀Tt=1 : gt(xt−k:t) ≤ 0 , ht(xt−k:t) = 0 . (3)

Following the dynamic programming principle we define a value function over a separator9

xt−k:t-1,

Definition 3 (k-order constrained Dynamic Programming (KODP)).

Jt(xt−k:t-1) ∆= min
xt:T

T∑
s=t

fs(xs−k:s) s.t. ∀Ts=1 : gs(xs−k:s) ≤ 0 , hs(xs−k:s) = 0 , (50)

= min
xt

[
ft(xt−k:t) + Jt+1(xt−k+1:t)

]
s.t. gt(xt−k:t) ≤ 0 , ht(xt−k:t) = 0 ,

(51)

JT+1
∆= 0 . (52)

Such k-order constrained Bellman equations are comparatively rare in the literature, but
straight-forward and mentioned already by Bellman in the 50’s (Bellman, 1956). See also
(Dohrmann and Robinett, 1999). Tassa et al. (2014) presented a DP approach for the special
case with constraints on the controls only. Solving the general non-linear constrained case,
computing Jt(xt−k:t-1) for all xt−k:t-1, is infeasible.

If, as in DDP and SQP, we approximate all cost terms ft as second order and constraints
gt, ht in first order, (Bemporad et al., 2002) shows an explicit derivation of an optimal con-
strained LQR (C-LQR) controller. The computation is complex and the resulting C-LQR is
piece-wise linear and continuous, where the pieces correspond to constrained activities of
the underlying QP. Bemporad et al. (2002) emphasize the benefit of computing such opti-
mal constrained regulators offline, for all xt−k:t-1, rather than requiring a fast local MPC
within the control loop to solve the resulting QP for the current xt−k:t-1.

An alternative approximation to the problem (50) is to not only linearize around an optimal
path, but also adopt the Lagrange parameters of the optimal path (Bellman, 1956). This
clearly is not optimal, as the true path might hit constraints other than the optimal path
and therefore require different Lagrange parameters. But it lends itself to a simple regulator
that also, using a one-step-lookahead, is guaranteed to generate feasible paths.

For fixed Lagrange parameters κt, λt, the dynamic programming principle for the Lagrangian
is

J̃t(xt−k:t-1) ∆= min
xt:T

T∑
s=t

fs(xs−k:s) + λ>sgs(xs−k:s) + κ>shs(xs−k:s) (53)

= min
xt

[
ft(xt−k:t) + λ>tgt(xt−k:t) + κ>tht(xt−k:t) + J̃t+1(xt−k+1:t)

]
. (54)

This can efficiently be computed in the LQ approximation, see below. Given Jt(xt−k:t-1) for
all t, we define

9We use the word separator as in Junction Trees: a separator makes the sub-trees conditionally independent.
In the Markov context, the future becomes independent from the past conditional to the separator.

19

Definition 4 (Approximate (fixed Lagrangian) constrained LQR (acLQR)).

πt : xt−k:t-1 7→ argmin
xt

[
ft(xt−k:t) + J̃t+1(xt−k+1:t)

]
s.t. gt(xt−k:t) ≤ 0, ht(xt−k:t) = 0 . (55)

Note that to determine the controls at time step t, we release the Lagrange parameters again
and hard constrain w.r.t. gt and ht. Only the Lagrange-cost-to-go function J̃t+1(xt−k+1:t),
computed via (53), employs the fixed Lagrange parameters. If for all t a feasible xt is found,
the whole path is guaranteed to be feasible.

To compute J̃t(xt−k:t-1) in the fixed Lagrange parameter case (53), the Lagrange terms can
be absorbed in the cost terms fs. To simplify the notation let us therefore focus on the
unconstrained k-order dynamic programming case,

J̃t(xt−k:t-1) = min
xt

[
f̃t(xt−k:t) + J̃t+1(xt−k+1:t)

]
, J̃T+1 = 0 . (56)

In the quadratic approximation we assume

J̃t(x) = x>Vtx+ 2v>tx+ const (57)

f̃t(x) ≈ ∇f̃t(x)>x+
1

2
x>∇2f̃t(x)x+ const . (58)

To derive an explicit minimizer xt in (56) we write the 2nd-order polynomial in block ma-
trix form[

ft(xt−k:t) + Jt+1(xt−k+1:t)
]

∆=

xt−k:t-1
xt

>Dt Ct
C>t Et

xt−k:t-1

xt

>

+ 2

dt
et

>xt−k:t-1

xt

 + const ,

(59)

where the components Dt, Et, Ct, dt, et are trivially defined in terms of ∇2ft(x), Vt,∇ft(x),
and vt. Then

x∗t = argmin
xt

[
ft(xt−k:t) + Jt+1(xt−k+1:t)

]
= −E-1

t (C>txt−k:t-1 + et) (60)

Vt = Dt − CtE-1
t C
>
t , vt = dt − CtE-1

t et . (61)

To get more intuition about this equation, let us first discuss the Riccati equation as special
case.

4.3 Sanity check in the LQG case and relation to DDP & iLQG

Let us assume k = 1 (a standard Markov chain) and standard linear control of a holonomic
system,

xt = Axt-1 +But-1 , Jt(xt-1) = min
xt:T

||xt −Axt-1||2Ĥ + ||xt||2Q (62)

with Ĥ = B->HB-1. Identifying ft(xt-1:t) = ||xt −Axt-1||2Ĥ + ||xt||2Q we have

∇ft = 2

−A
>

1

Ĥ(xt −Axt-1) + 2

1
0

Qxt , ∇2ft = 2

A
>ĤA −A>Ĥ
−ĤA Ĥ +Q

 (63)

20

Dt = A>ĤA , Et = Ĥ +Q+ Vt+1 , Ct = −A>Ĥ (64)

Vt = A>
[
Ĥ − Ĥ(Ĥ +Q+ Vt+1)-1Ĥ

]
A = A>

[
(Ĥ -1 + V̂ -1)-1)

]
A (65)

= A>
[
V̂ − V̂ (Ĥ + V̂)-1V̂)

]
A . (66)

where V̂ = Q+Vt+1 and the last lines use the Woodbury identity (A-1 +B-1)-1 = A−A(A+

B)-1A twice. The last line is the classical Riccati equation for V̂ .

This was just a sanity check, confirming that in the unconstrained LQ-case, the DP equation
(53) reduces to the standard Riccati equation. Let us recap what we have found:

(i) We know that in the unconstrained LQ case, or KOMO problem is just an unconstrained
quadratic program, where the first Newton step directly jumps to the optimum.
(ii) One way to compute this Newton step (or optimum) is via the methods we described
in the first part of the paper where we emphasized the importance of the structure of the
Hessian as a banded symmetric matrix, allowing for the complexity O(Tk2n3) of comput-
ing Newton steps under the KOMO assumption. We derived this complexity by looking at
the respective matrix operations, in particular the implicit Cholesky decomposition.
(iii) We have now seen a second way to compute the optimum, by recursing backward the
explicit DP equation (53), or (61) in the LQ approximation, which equally has complexity
O(Tk2n3). This establishes an explicit relation between matrix inversion and the dynamic
programming case.
(iv) If these methods are applied to local LQ approximations of a non-linear problem, the
Newton step and Riccati equation lead to the same next iterate, that is, the same next
path. In that view, the standard indirect multiple shooting methods DDP and iLQG can
be viewed as Newton methods that use the Riccati equation (or DDP’s equation) to com-
pute Newton steps instead of banded matrix inversion. Both algorithms also require step
size controlling, such as Levenberg-Marquardt, to become robust.
(v) However, as mentioned already in Sec. 4.1, DDP and iLQG are different to Newton
steps in one respect: Both use a Riccati sweep or 2nd-order Taylor approximations to com-
pute the next control path u. However, the control path u is then used to compute the next
state path x = F (u) using the exact forward dynamics.
If we wanted to get equivalent iterates using Newton steps we would have to: 1) compute
the next state path x using a Newton step, 2) compute the control path u for x, 3) use the
exact non-linear dynamics x′ = F (u) to compute a corrected state path x′.

This clarifies the tight relations between classical DDP and iLQG and Newton steps in
KOMO. A further technical difference is that in KOMO we can alternatively represent the
problem as a k = 2-order process on the configuration variables, instead of as a k = 1-
order process in phase space, which may be numerically more stable. Hard constraints
have been considered in iLQG only for the special case with constraints on the controls
Tassa et al. (2014). The particular k-order constrained Dynamic Programming (50) has, to
our knowledge, not been proposed before.

4.4 Constrained Model Predictive Control & staying close to the refer-
ence

Stochasticity (or un-modelled additional aspects such as control delay or motor controller
properties) will always lead us away from the optimal path. Depending how far we are off,
the 2nd-order approximations we used to optimize the path and derive the acLQR around

21

the path become imprecise and might lead to even more deviation from the optimal path.
The standard approach to compensate for this is Model Predictive Control (MPC) (see, e.g.,
(Diehl et al., 2009)).

In MPC we solve, in real time, at every time step t a finite horizon trajectory optimiza-
tion problem given the concrete current state xt. This finite horizon problem will also
be non-linear and require local 2nd-order approximations, but these approximations are
computed at the true xt. When an optimal path x∗ was precomputed, the finite-horizon
MPC problem can be defined as finding controls that steer back to the reference path, e.g.,
minxt:t+H

||u||2H s.t. xt+H = x∗t+H . However, MPC can also be viewed as anH-step looka-
head variant of the optimal controller we get from the Bellman equation. In this view our
acLQR (55) is a 1-step MPC. We can more generally define

Definition 5 (Approximate (fixed Lagrangian) constrained MPC Regulator (acMPC)).

πt : xt−k:t-1 7→ argmin
xt:t+H

[t+H-1∑
s=t

fs(xs−k:s) + J̃t+H(xt+H−k:t+H-1) + %||xt+H − x∗t+H ||2
]

s.t. ∀t+H-1
s=t : gs(xs−k:s) ≤ 0, hs(xs−k:s) = 0 . (67)

Let’s neglect the %-term first. For H = 1 this reduces to the acLQR (55) that looks only one
step ahead and relies on the (fixed Lagrangian) cost-to-go estimate J̃t+1. For H = T − t+ 1,
acMPC becomes the full, long-horizon path optimization problem until termination T .

In typical applications, that is, for typical choices of the original KOMO problem (3) there
is a caveat: Very often the objectives concern control costs and costs/constraints associated
with the final state xT only. The effect is that the value functions J̃t+H have, for t � T ,
very low eigenvalues. The resulting “gains” of the acLQR or acMPC will therefore also be
very low. If the real system was linear, this would not be a problem—the Riccati equation
tells us that this low-gain controller is optimal globally no matter how far we perturbed
from the reference. However, in practice, for non-linear and imprecisely modeled systems,
this would lead to a large and undesirable drift away from the reference, making the pre-
computed x∗ and its local linearizations irrelevant, and be non-robust against small model
errors.

The standard way to enforce staying closer to the reference during execution is to add the
%-term to enforce steering back to the reference at horizon H . The second option is to
introduce additional penalties f̃t ← f̃t + %||xt− x∗t ||2 for deviations in every time step10 and
use this f̃t in the backward dynamic programming (53) to compute value functions J̃t for
the KOMO problem with cost terms f̃t. Using such MPC we get robust trajectory tracking
and can tune the stiffness of tracking by adjusting % and H .

4.5 Probabilistic Interpretation and the Laplace Approximation

Let us neglect constraints and consider problems of the form

min
x
f(x) , f(x) =

∑
t

ft(xt−k:t) . (68)

There is a natural relation between cost (or “neg-energy”, “error”) and probabilities. Namely,
if f(x) denotes a cost for state x—or an error one assigns to choosing x—and p(x) denotes

10Note the relation to Levenberg-Marquardt regularization

22

a probability for every possible value of x, then a natural relation11 is

P (x) ∝ e−f(x) , f(x) = − log p(x) . (69)

Given a problem of the form (68) we may therefore define a distribution over paths as

P (x) ∝
∏
t

exp{−fi(xt−k:t)} . (70)

It is interesting to investigate how this probability distribution over paths is related to find-
ing the optimal path, and to stochastic optimal control under the respective costs. Note that
in the optimal control context (k = 1), ft(xt-1:t) subsumes control costs and state costs, e.g.,
ft(xt-1:t) = ||u||2H + ||xt||2R where u = u(xt-1, xt).

Toussaint (2009a) and Rawlik et al. (2012) discuss an approach to stochastic optimal control
that considers the distribution

P (x0:T , u0:T) ∝ P (x0)

T∏
t=0

P (xt+1 |xt, ut) π(ut|xt) exp{−ηct(xt, ut)} . (71)

Here, in contrast to (70), this is the joint distribution over controls and states. Rawlik et al.
(2012) discuss in detail how inference, or more precisely, minimizing KL-divergences un-
der such probabilistic models generalizes previous approaches such as path integral con-
trol methods (Kappen et al., 2012), Approximate Inference Control (Toussaint, 2009a), but
also model-free Expectation Maximization and eNAC policy search methods (Vlassis and
Toussaint, 2009; Peters and Schaal, 2008).

In all these contexts, a central problem of interest is to approximate the marginals of the
path distribution (71). Above we already established the equivalence of DP programming
and Newton steps in an LQ setting. Message passing in Gaussian factor graphs is generally
equivalent to DP with squared cost-to-go functions. Typically one distinguishes between
DP, which computes cost-to-go functions, and the forward unrolling of the optimal con-
troller, to compute the optimal path. This can be viewed more symmetrically: computing
optimal cost-to-go and cost-so-far functions forward and backward (or cost-to-go functions
for all branches of a tree) equally yields the optimal path.

If the factor graph is not Gaussian, or the objective not 2nd-order polynomial, message
passing as well as DP are approximated. Again, using Gaussian approximate message
passing—e.g., as in extended Kalman filtering and smoothing—is equivalent to approx-
imating the cost-to-go function locally as quadratic (Toussaint, 2009a). In conclusion, it-
erative Gaussian message passing to estimate marginals of (71) is very closely related to
iterative DP using local LQG approximations and Newton methods to minimize (68).

So what are the motivations for the mentioned family of methods that build on the prob-
abilistic interpretation? Essentially it is specific ideas on how exactly to do the approxi-
mation that arise from the probabilistic view, other than the Laplace approximation. For
instance, in the probabilistic setting Gaussian messages can also be approximated using
the Unscented Transform (Julier and Uhlmann, 1997), or Expectation Propagation (Minka,
2001). These are slightly different to local Laplace approximations. Importantly, if the path

11Why is this a natural relation? Let us assume we have p(x). We want to find a cost quantity f(x) which is
some function of p(x). We require that if a certain value x1 is more likely than another, p(x1) > p(x2), then
picking x1 should imply less cost, f(x1) < f(x2) (Axiom 1). Further, when we have two independent random
variables x and y probabilities are multiplicative, p(x, y) = p(x)p(y). We require that, for independent variables,
cost is additive, f(x, y) = f(x) + f(y) (Axiom 2). From both follows that f needs to be a logarithm of p.

23

distribution cannot well be approximated as Gaussian, esp. because it is multi-modal, the
probabilistic view provides alternative approaches to approximation, for instance, sam-
pling from the path distribution (Kalakrishnan et al., 2011). Here we see that the goal of
optimal control under a multi-modal path distribution really deviates from just computing
an optimal path.

Incorporating hard constraints in approximate message passing is hard. In the context of
Gaussian messages, truncated Gaussians could be used to approximate hard constraints
(Toussaint, 2009b). However, in our experience this is far less precise and robust than using
Lagrangian methods in optimization. Arguably, the handling of constraints, as well as the
availability of robust optimization methods are the most important arguments in favor of
the optimization view in comparison to the probabilistic interpretations. Multi-modality
and true stochastic optimal control under such multi-modality are the strongest arguments
for the probabilistic view.

As a side node on parallelizing message passing computations: KOMO, DDP, and iLQG
all do full path updates in each iteration, that is, they compute a full new path x0:T in each
Newton(-like) or line search step. This is a difference to AICO which allows to update in-
dividual states xt in arbitrary order, not necessarily sweeping forward and backward. E.g.
in AICO we can update a single xt multiple times in sequence when the updates are large
and therefore the local linearization changes significantly locally. This is possible because
AICO computes backward and forward messages which define a local posterior belief for
xt that includes forward and backward messages. In the dynamic programming view this
means that cost-to-go and cost-so-far functions are computed to define a local optimization
problem over xt only. In practice, however, these local path updates are harder to handle
than global steps, especially because global monotonicity, as guaranteed by global Wolfe
conditions, does not easily realized.

5 Conclusion

In this tutorial we chose the k-order cost and constraint feature convention to represent tra-
jectory optimization problems as NLP. The implied structure of the Jacobians and Hessian
is of central importance to understand the complexity of Newton steps in such settings.

Newton approaches are not just one alternative under many—they are at the core of ef-
ficient optimization as well as at the core of understanding the fundaments of the many
related approaches mentioned in this tutorial. In particular, we’ve discussed the struc-
ture and complexity of computing Newton steps for banded symmetric Hessians and its
relation to solving (tree- or Markov-) structured least squares problems using dynamic
programming, both of which have a computational complexity linear in the number of
variables. We have discussed control in the KOMO convention, especially constrained k-
order dynamic programming to compute an approximate regulator around the optimal
path with guaranteed feasibility, and its MPC extension. For the unconstrained LQ case we
high-lighted the relations to DDP, iLQG, and AICO.

An interesting line of future research based on this discussion is related to path optimiza-
tion processes that are not strictly Markovian in the KOMO sense. One example is jointly
optimizing over paths and model parameters, which equally implies non-banded terms in
the Hessian (Kolev and Todorov, 2015). Another example is sequential manipulation, in

24

which costs that arise in some later part of the motion may directly depend on configu-
ration decisions (grasps) made much earlier. The gradient of such costs then will always
be non-zero w.r.t. the grasp configuration. These introduce “loops” in the dependencies
that violate the k-order Markov assumption. However, Graph-SLAM has successfully ad-
dressed exactly this problem. The established relations between path optimization and
Graph-SLAM may therefore be a promising candidate for an optimization-based approach
to sequential manipulation.

Acknowledgement This work was supported by the DFG under grants TO 409/9-1 and
the 3rdHand EU-Project FP7-ICT-2013-10610878.

References

R. Bellman. Dynamic programming and lagrange multipliers. Proceedings of the National
Academy of Sciences, 42(10):767–769, 1956.

A. Bemporad, M. Morari, V. Dua, and E. N. Pistikopoulos. The explicit linear quadratic
regulator for constrained systems. Automatica, 38(1):3–20, 2002.

J. T. Betts. Survey of numerical methods for trajectory optimization. Journal of guidance,
control, and dynamics, 21(2):193–207, 1998.

A. R. Conn, N. I. Gould, and P. Toint. A globally convergent augmented Lagrangian al-
gorithm for optimization with general constraints and simple bounds. SIAM Journal on
Numerical Analysis, 28(2):545–572, 1991.

F. Dellaert. Factor graphs and GTSAM: A hands-on introduction. Technical Report Techni-
cal Report GT-RIM-CP&R-2012-002, Georgia Tech, 2012.

M. Diehl, H. J. Ferreau, and N. Haverbeke. Efficient numerical methods for nonlinear MPC
and moving horizon estimation. In Nonlinear Model Predictive Control, pages 391–417.
Springer, 2009.

C. R. Dohrmann and R. D. Robinett. Dynamic programming method for constrained
discrete-time optimal control. Journal of Optimization Theory and Applications, 101(2):259–
283, 1999.

J. Dong, M. Mukadam, F. Dellaert, and B. Boots. Motion Planning as Probabilistic Infer-
ence using Gaussian Processes and Factor Graphs. In Proceedings of Robotics: Science and
Systems (RSS-2016), 2016.

P. Englert and M. Toussaint. Inverse KKT–Learning Cost Functions of Manipulation Tasks
from Demonstrations. In Proceedings of the International Symposium of Robotics Research,
2015.

J. Folkesson and H. Christensen. Graphical SLAM-a self-correcting map. In Robotics and
Automation, 2004. Proceedings. ICRA’04. 2004 IEEE International Conference on, volume 1,
pages 383–390. IEEE, 2004.

G. H. Golub and C. F. Van Loan. Matrix Computations, volume 3. JHU Press, 2012.

25

S. J. Julier and J. K. Uhlmann. New extension of the Kalman filter to nonlinear systems. In
AeroSense’97, pages 182–193. International Society for Optics and Photonics, 1997.

M. Kalakrishnan, S. Chitta, E. Theodorou, P. Pastor, and S. Schaal. STOMP: Stochastic
trajectory optimization for motion planning. In Robotics and Automation (ICRA), 2011
IEEE International Conference on, pages 4569–4574. IEEE, 2011.

H. J. Kappen, V. Gómez, and M. Opper. Optimal control as a graphical model inference
problem. Machine learning, 87(2):159–182, 2012.

S. Kolev and E. Todorov. Physically consistent state estimation and system identification
for contacts. In Humanoid Robots (Humanoids), 2015 IEEE-RAS 15th International Conference
on, pages 1036–1043. IEEE, 2015.

F. R. Kschischang, B. J. Frey, and H.-A. Loeliger. Factor graphs and the sum-product algo-
rithm. Information Theory, IEEE Transactions on, 47(2):498–519, 2001.

R. Kümmerle, G. Grisetti, H. Strasdat, K. Konolige, and W. Burgard. g2o: A general frame-
work for graph optimization. In Robotics and Automation (ICRA), 2011 IEEE International
Conference on, pages 3607–3613. IEEE, 2011.

J. Lafferty, A. McCallum, and F. C. Pereira. Conditional random fields: Probabilistic models
for segmenting and labeling sequence data. In Proc. 18th International Conf. on Machine
Learning (ICML), pages 282–289, 2001.

L.-z. Liao and C. A. Shoemaker. Advantages of differential dynamic programming over
Newton’s method for discrete-time optimal control problems. Technical report, Cornell
University, 1992.

D. Mayne. A second-order gradient method for determining optimal trajectories of non-
linear discrete-time systems. International Journal of Control, 3(1):85–95, 1966.

T. P. Minka. Expectation propagation for approximate Bayesian inference. In Proceedings of
the Seventeenth Conference on Uncertainty in Artificial Intelligence, pages 362–369. Morgan
Kaufmann Publishers Inc., 2001.

J. Nocedal and S. Wright. Numerical Optimization. Springer Science & Business Media, 2006.

J. Peters and S. Schaal. Natural actor-critic. Neurocomputing, 71(7):1180–1190, 2008.

N. Ratliff, M. Zucker, J. A. Bagnell, and S. Srinivasa. CHOMP: Gradient optimization tech-
niques for efficient motion planning. In Robotics and Automation, 2009. ICRA’09. IEEE
International Conference on, pages 489–494. IEEE, 2009.

N. Ratliff, M. Toussaint, and S. Schaal. Understanding the geometry of workspace obsta-
cles in Motion Optimization. In Robotics and Automation (ICRA), 2015 IEEE International
Conference on, pages 4202–4209. IEEE, 2015.

K. Rawlik, M. Toussaint, and S. Vijayakumar. On stochastic optimal control and reinforce-
ment learning by approximate inference. In Proc. of Robotics: Science and Systems (R:SS
2012), 2012. Runner Up Best Paper Award.

J. Schulman, J. Ho, A. X. Lee, I. Awwal, H. Bradlow, and P. Abbeel. Finding Locally Optimal,
Collision-Free Trajectories with Sequential Convex Optimization. In Robotics: Science and
Systems, volume 9, pages 1–10. Citeseer, 2013.

26

Y. Tassa, N. Mansard, and E. Todorov. Control-limited differential dynamic programming.
In Robotics and Automation (ICRA), 2014 IEEE International Conference on, pages 1168–1175.
IEEE, 2014.

S. Thrun and M. Montemerlo. The graph SLAM algorithm with applications to large-scale
mapping of urban structures. The International Journal of Robotics Research, 25(5-6):403–
429, 2006.

E. Todorov and W. Li. A generalized iterative LQG method for locally-optimal feedback
control of constrained nonlinear stochastic systems. In American Control Conference, 2005.
Proceedings of the 2005, pages 300–306. IEEE, 2005.

M. Toussaint. Robot trajectory optimization using approximate inference. In Proc. of the Int.
Conf. on Machine Learning (ICML 2009), pages 1049–1056. ACM, 2009a. ISBN 978-1-60558-
516-1.

M. Toussaint. Pros and cons of truncated Gaussian EP in the context of Approximate In-
ference Control. NIPS Workshop on Probabilistic Approaches for Robotics and Control,
2009b.

M. Toussaint. A novel augmented lagrangian approach for inequalities and convergent
any-time non-central updates. e-Print arXiv:1412.4329, 2014a.

M. Toussaint. KOMO: Newton methods for k-order markov constrained motion problems.
e-Print arXiv:1407.0414, 2014b.

N. Vlassis and M. Toussaint. Model-free reinforcement learning as mixture learning. In
Proc. of the Int. Conf. on Machine Learning (ICML 2009), pages 1081–1088, 2009. ISBN 978-
1-60558-516-1.

O. Von Stryk and R. Bulirsch. Direct and indirect methods for trajectory optimization.
Annals of operations research, 37(1):357–373, 1992.

27

