Hierarchical Reinforcement Learning

Action hierarchy, hierarchical RL, semi-MDP

Vien Ngo
Marc Toussaint
University of Stuttgart
Outline

- Hierarchical reinforcement learning
- Learning subgoals/hierarchy
Accelerating Reinforcement learning

- Temporal abstraction
- Goal/State Abstraction
Accelerating Reinforcement learning: Abstraction

- Temporal abstraction
- Goal/State Abstraction
Temporal Abstraction

• Dealing with multiple-time step ”macro” actions.

• Advantages:
 – Only exploring/computing values for interesting states (e.i. subgoals, …)
 – Transfer learning across problems/regions.
Hierarchical reinforcement learning

Three approaches to HRL

- Options: Sutton (temporal + state abstraction)
- Finite state controller: Parr & Russel (temporal abstraction)
- Given an action hierarchy: MAXQ (temporal + state abstraction)
Semi-Markov decision process
Semi-Markov decision process

SMDP = \{S, A, \mathcal{T}, \mathcal{R}\},

- State space S
- Action space A
- Transition function $\mathcal{T}(s, a, s', t) = p(s', t|s, a)$
- State space $\mathcal{R}(s, a)$
SMDP

Semi-Markov decision processes (SMDPs) generalize MDPs by

• allowing the decision maker to choose actions whenever the system state changes

• modeling the system evolution in continuous time

• allowing the time spent in a particular state to follow an arbitrary probability distribution

The system state may change several times between decision epochs; only the state at a decision epoch is relevant to the decision maker.
Semi-Markov Decision Process (SMDP)

- $\mathcal{I}(s, a, s', t) = P(s', t|s, a)$ defines the joint probability of a next state, and terminal time.
Bellman equations for SMDP

- Consider discrete-time SMDP:

\[V^*(s) = \max_a \left[R(s, a) + \gamma^\tau \sum_{s', \tau} p(s', \tau | s, a)V^*(s') \right] \]

\[Q^*(s, a) = R(s, a) + \gamma^\tau \sum_{s', \tau} p(s', \tau | s, a) \max_b Q^*(s', b) \]
Bellman equations for SMDP

• Consider discrete-time SMDP:

\[
V^*(s) = \max_a \left[R(s, a) + \gamma \sum_{s', \tau} p(s', \tau | s, a) V^*(s') \right]
\]

\[
Q^*(s, a) = R(s, a) + \gamma \sum_{s', \tau} p(s', \tau | s, a) \max_b Q^*(s', b)
\]

• Dynamic Programming algorithms are correspondingly extended to SMDPs (Howard, 1971; Puterman, 1994)
Example: Taxi Problem

```
Example: Taxi Problem

BB
RR
YY
GG

12/??
```
Example 2: SMDP

4 stochastic primitive actions
- up Fail 33% of the time
- left
- right
- down

8 multi-step options
(to each room's 2 hallways)

Sutton, Precup, Singh, 1999
Example 2: SMDP

Sutton, Precup, Singh, 1999
Example 2: SMDP

Sutton, Precup, Singh, 1999
Options

Sutton, Precup, Singh, 1999
Options

An option is a triple \(o = \langle I, \pi, \beta \rangle \)

- \(I \): initiation set.
- \(\pi : S \times A \mapsto [0, 1] \): option’s policy
- \(\beta : S \mapsto [0, 1] \): termination condition
Value Functions for Options

option’s policy: \(\pi_i \); global policy: \(\mu \)

- Denote

 – reward part of option:

 \[
 r(s, o) = \mathbb{E}\left\{ r_{t+1} + \gamma r_{t+2} + \gamma^2 r_{t+3} + \ldots + \gamma^k r_{t+k} | o, s_t = s \right\}
 \]

 – prediction-state part:

 \[
 p(s' | s, o) = \sum_{k=1}^{\infty} p(s', k | s, o) \gamma^k
 \]

- Global policy’s value function

 \[
 V^\mu(s) = \mathbb{E}\left\{ r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} \ldots | \mu, s_t = s \right\} = \mathbb{E}\left\{ r_{t+1} + \gamma r_{t+2} + \gamma^2 r_{t+3} + \ldots + \gamma^{k-1} r_{t+k} + \gamma^k V^\mu(s_{t+k}) | \mu, s_t = s \right\} = \mathbb{E}\left[r(s, o) + \sum_{s_{t+k}} p(s_{t+k} | s, o) V^\mu(s') | \mu, s_t = s \right]
 \]
\[Q^\mu(s, o) = \mathbb{E}\left\{ r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} \ldots | o\mu, s_t = s \right\} \]

\[= \mathbb{E}\left\{ r_{t+1} + \gamma r_{t+2} + \gamma^2 r_{t+3} + \ldots + \gamma^{k-1} r_{t+k} + \gamma^k V^\mu(s_{t+k}) | \mu, s_t = s \right\} \]

\[= \mathbb{E}\left\{ r_{t+1} + \gamma r_{t+2} + \gamma^2 r_{t+3} + \ldots + \gamma^{k-1} r_{t+k} \right. \]
\[+ \max_{o'} \mu(s_{t+k}, o') Q^\mu(s_{t+k}, o') | o\mu, s_t = s \} \]

\[= r(s, o) + \sum p(s_{t+k} | s, o) \max_{o'} \mu(s_{t+k}, o') Q^\mu(s_{t+k}, o') \]
Options: Learning

- SMDP Q-learning: given the set of defined options.
 - execute the current selected option (e.g. use epsilon greedy $Q(s, o)$) to termination.
 - compute $r(s_t, o)$, then update $Q(s_t, o)$ as Q-learning/SARSA.
Options: Learning

- SMDP Q-learning: given the set of defined options.
 - execute the current selected option (e.g. use epsilon greedy $Q(s, o)$) to termination.
 - compute $r(s_t, o)$, then update $Q(s_t, o)$ as Q-learning/SARSA.

- Intra-option Q-learning: partially defined options
 - after each primitive action, update all the options (off-policy learning).
 - converge to correct values, "under same assumptions as 1-step Q-learning" (Sutton)
Hierarchies of Abstract Machines (HAM)

HAM

- A HAM is a program which constrains the actions that the agent can take in each state.
- Each machine is defined by: a set of states, a transition function, and a start function.
 - Machine states \(m \): Action, Call, Choice, Stop.
 - The transition function: a stochastic function of the current machine state and some features of the resulting environment state to determine the next machine state.
 - Start function that determines the initial state of the machine.
HAM: Learning
RL with HAM

- $H \circ MDP = SMDP$.
- Given defined HAMs, finding policy $a_t = \pi(s_t, m_t)$ (actions are choices made by machines).
- Given HAM means: similar to given well defined options o, then finding $\pi(s, o)$.
MAXQ

T. G. Dietterich (2000) "Hierarchical Reinforcement Learning with the MAXQ Value Function Decomposition", JAIR.
The underlying MDP \mathcal{M} is decomposed into a set of substask $\mathcal{M}_0, \mathcal{M}_1, \ldots, \mathcal{M}_n$.

\mathcal{M}_0 is the root subtask. (solving \mathcal{M}_0 solves \mathcal{M}).

Each substask might consist of either primitive actions or other substasks.

example: TAXI problem.
MAXQ: Value Decomposition

- Consider all descendents \(a \) of a subtask \(M_i \) (or option \(M_i \))

\[
V^\mu(i, s) = \mathbb{E}\left\{ r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} \ldots | \mu, s_t = s \right\}
\]

(until \(M_i \) terminates)

\[
= \mathbb{E}\left\{ r_{t+1} + \gamma r_{t+2} + \ldots + \gamma^{k-1} r_{t+k} + \gamma^k V^\mu(s_{t+k}) | \mu, s_t = s \right\}
\]

\[
= \mathbb{E}\left[r(s, \pi_i(s)) + \gamma^{k-1} r_{t+k} + \gamma^k V^\mu(i, s_{t+k}) | \mu, s_t = s \right]
\]

\[
= V^\mu(\pi_i(s), s) + \sum_{s', N} p(s', N | s, \pi_i(s)) \gamma^N V^\mu(i, s')
\]

reward term

\[
Q^\mu(i, s, a) = V^\mu(a, s) + C^\mu(i, s, a)
\]

- The reward term:

\[
V^\mu(i, s) = \begin{cases}
Q^\mu(i, s, \pi_i(s)) & \text{If } i \text{ is a macro action} \\
\sum_{s'} P(s'|s, a)r(s'|s, a) & \text{If } i \text{ is an primitive action}
\end{cases}
\]
• The completion term $C^\mu(i, s, a)$ is the expected discounted cumulative reward of completing subtask M_i after taking subroutine M_a in state s.
• The completion term $C^\mu(i, s, a)$ is the expected discounted cumulative reward of completing subtask \mathcal{M}_i after taking subroutine \mathcal{M}_a in state s.

• It recursively decompose $V^\mu(0, s)$ into value functions for $\mathcal{M}_1, \mathcal{M}_2, \ldots, \mathcal{M}_n$.
• The completion term $C^\mu(i, s, a)$ is the expected discounted cumulative reward of completing subtask \mathcal{M}_i after taking subroutine \mathcal{M}_a in state s.

• It recursively decomposes $V^\mu(0, s)$ into value functions for $\mathcal{M}_1, \mathcal{M}_2, \ldots, \mathcal{M}_n$.

• In general:

$$V^\mu(0, s) = V^\mu(a_m, s) + C^\mu(a_{m-1}, s, a_m) + \ldots + C^\mu(a_1, s, a_2) + C^\mu(0, s, a_1)$$

where a_0, a_1, \ldots, a_m is a sequence of taken subtasks by a hierarchical policy going from Root \mathcal{M}_0.

• For learning: only need to store C functions for non-primitive actions, and V for primitive actions.
Example of MAXQ value decomposition

\[V^\pi(0, s) \]

\[V^\pi(a_1, s) \]

\[V^\pi(a_{m-1}, s) \]

\[V^\pi(a_m, s) \]

\[C^\pi(a_{m-1}, s, a_m) \]

\[C^\pi(a_1, s, a_2) \]

\[C^\pi(0, s, a_1) \]

\[r_1 \quad r_2 \quad r_3 \quad r_4 \quad r_5 \]

\[r_8 \quad r_9 \quad r_{10} \]

\[r_{11} \quad r_{12} \quad r_{13} \quad r_{14} \]

\(r_1, r_2, \ldots, r_{14} \) is a sequence of rewards w.r.t primitive actions at times 1, 2, \ldots, 14.
MAXQ: Learning Algorithm

MAXQ-0 learning algorithm

- Given action hierarchy.
- Each subtask has zero pseudo terminal reward.
MAXQ-0 Learning Algorithm

Initialize \(V(i, s) \) (for all primitive \(i \)) and \(C(i, s, j) \) (for all non-primitive \(i \), and descendents \(j \) of \(i \)) arbitrarily.

MAXQ-0(Node \(i \), State \(s \))

1: \textbf{if } \(i \) is primitive \textbf{then}
2: \hspace{1em} execute \(i \), receive \(r, s' \)
3: \hspace{1em} \(V_{t+1}(i, s) = (1 - \alpha)V_t(i, s) + \alpha r_t \)
4: \textbf{else}
5: \hspace{1em} \(steps = 0 \)
6: \hspace{1em} \textbf{while } \(i \) not terminates \textbf{do}
7: \hspace{2em} Choose \(a \sim \pi_i(s) \) (e.g. \(\arg \max_b Q(i, s, b) \))
8: \hspace{2em} call \(N = \text{MAXQ-0}(a, s) \) (recursive call)
9: \hspace{2em} observe \(s' \)
10: \hspace{1.5em} \(C_{t+1}(i, s, a) = (1 - \alpha)C_t(i, s, a) + \alpha.\gamma^N.V_t(i, s') \)
11: \hspace{1.5em} \(steps = steps + N \)
12: \hspace{1.5em} \(s = s' \)
13: \hspace{1.5em} \textbf{end while}
14: \textbf{end if}
MAXQ-0 Learning Algorithm

- Compute $V_t(i, s')$ if i is non-primitive?
MAXQ-0 Learning Algorithm

- Compute $V_t(i, s')$ if i is non-primitive?

$$V_t(i, s) = \begin{cases}
\max_a Q_t(i, s, a) & \text{If } i \text{ is a macro action} \\
V_t(i, s) & \text{If } i \text{ is a primitive action}
\end{cases}$$

$$Q_t(i, s, a) = V_t(a, s) + C_t(i, s, a)$$
MAXQ: Learning Algorithm

MAXQ-Q learning algorithm

- Given action hierarchy.
- When each subtask has arbitrary *non-zero* pseudo reward \tilde{R}_i.
- MAXQ-Q introduces one more completion function for each subtask to use inside itself.
MAXQ-Q Learning Algorithm

Initialize $V(i, s)$ (for all primitive i) and $C(i, s, j)$ and $\tilde{C}(i, s, j)$ (for all non-primitive i, and descendents j of i) arbitrarily.

MAXQ-Q(Node i, State s)

1: if i is primitive then
2: execute i, receive r, s'
3: $V_{t+1}(i, s) = (1 - \alpha)V_t(i, s) + \alpha r_t$
4: else
5: $\text{steps} = 0$
6: while i not terminates do
7: Choose $a \sim \pi_i(s) \ (\arg \max_{a'} [\tilde{C}(i, s', a') + \tilde{V}(i, s')])$
8: call $N = \text{MAXQ-Q}(a, s)$ (recursive call)
9: observe s'
10: $a^* = \arg \max_{a'} [\tilde{C}(i, s', a') + \tilde{V}(i, s')]$
11: $\tilde{C}_{t+1}(i, s, a) = (1 - \alpha)\tilde{C}_t(i, s, a) + \alpha \gamma^N \left(\tilde{R}_i(s') + \tilde{C}_t(i, s', a^*) + \tilde{V}_t(a^*, s') \right)$
12: $C_{t+1}(i, s, a) = (1 - \alpha)C_t(i, s, a) + \alpha \gamma^N \left(C_t(i, s', a^*) + V_t(a^*, s') \right)$
13: $\text{steps} = \text{steps} + N$
14: $s = s'$
15: end while
16: end if
Optimality in HRL?
Optimality in HRL?

Hierarchically optimal vs. recursively optimal

- Hierarchical optimality: The learnt policy is the best policy consistent with the given hierarchy. Task’s policy depends not only on its children’s policies, but also on its context.

- Recursive optimality: The policy for a parent task is optimal given the learnt policies of its children. (Context-free task’s policy).
Optimality in HRL?

hierarchically optimal vs. recursively optimal

- Hierarchical optimality: The learnt policy is the best policy consistent with the given hierarchy. Task’s policy depends not only on its children’s policies, but also on its context.

- Recursive optimality: The policy for a parent task is optimal given the learnt policies of its children. (Context-free task’s policy).
 - The context-free policies offer state abstraction/transfer learning better, which provides common macro actions to many other tasks.
Optimality in HRL

(an example from a tutorial of Dietterich).
Optimality: in Options

- If action space consists of both primitive actions and options, it converges to an optimal policy.
- Otherwise, options with SMDP learning was proved to converge to a hierarchically optimal policy.

(an example from a tutorial of Dietterich).
Opimality: in HAM

- $\pi(s_1) = South$,
- $\pi(s_2) = \{North, South\}$
- ...

- Proved to be hierarchically optimal.
Optimality: in MAXQ

(an example from a tutorial of Dietterich).
Optimality: in MAXQ

- MAXQ is recursively optimal.

(an example from a tutorial of Dietterich).
Optimality in HRL?

- Options/HAM learns a hierarchically optimal policy.
- MAXQ learns a recursively optimal policy.
 - MAXQ can obtain a policy which has hierarchical optimality with good design of subtask or pseudo-rewards.
Hierarchy/subgoal learning
Subgoal learning

- Creating useful options randomly/heuristically, then adding gradually.
Subgoal learning

- Creating useful options randomly/heuristically, then adding gradually.
- Creating an option/subgoal w.r.t a bottleneck (commonalities across multiple paths to a solution).
Hierarchy/subgoal learning

Barto et. al. (2004, intrinsically motivated learning)
Hengst, 2002. (also use bottleneck)
Neville Mehta et. al. 2008 (using DBN)
etc.
Human hierarchical decision making