
Robotics

Exercise 9

Marc Toussaint

Lecturer: Duy Nguyen-Tuong

TAs: Philipp Kratzer, Janik Hager, Yoojin Oh

Machine Learning & Robotics lab, U Stuttgart

Universitätsstraße 38, 70569 Stuttgart, Germany

January 8, 2019

1 Particle Filtering the location of a car (6 points)

You are going to implement a particle filter. Access the code as usual:

1. To make sure you have an updated version of the repository, run ’git pull ’ and ’git submodule update’

2. For python run: ’jupyter-notebook py/07-particle filter/07-particle filter.ipynb’

3. For C++ run: ’cd cpp/07-particle filter’, ’make’, ’./x.exe’

The motion of the car is described by the following:

State q =


x
y
θ

 Controls u =

v
ϕ



Sytem equation


ẋ
ẏ

θ̇

 =


v cos θ
v sin θ

(v/L) tanϕ


|ϕ| < Φ

The CarSimulator simulates the described car (using Euler integration with step size 1sec). At each time step a

control signal u = (v, φ) moves the car a bit and Gaussian noise with standard deviation σdynamics = .03 is added to x,

y and θ. Then, in each step, the car measures the relative positions of m landmark points (green cylinders), resulting

in an observation yt ∈ Rm×2; these observations are Gaussian-noisy with standard deviation σobservation = .5. In the

current implementation the control signal ut = (.1, .2) is fixed (roughly driving circles).

a) Odometry (dead reckoning): First write a particle filter (with N = 100 particles) that ignores the observations.

For this you need to use the cars system dynamics (described above) to propagate each particle, and add some noise

σdynamics to each particle (step 3 on slide 06:24). Draw the particles (their x, y component) into the display. Expected

is that the particle cloud becomes larger and larger. (2 P)

b) Next implement the likelihood weights wi ∝ P (yt|xit) = N(yt|y(xit), σ) ∝ e−
1
2 (yt−y(x

i
t))

2/σ2

where y(xit) is the (ideal)

observation the car would have if it were in the particle position xit. Since
∑
i wi = 1, normalize the weights after this

computation. (2 P)

c) Test the full particle filter including the likelihood weights and resampling. Test using a larger (10σobservation) and

smaller (σobservation/10) variance in the computation of the likelihood. (2 P)

1

Robotics
Exercise 9, Marc Toussaint—January 8, 2019 2

2 Bayes Smoothing (6 points)

In the lecture we derived the Bayesian filter: given information on the past (observations y0:t and controls u0:t-1) it

estimates the current state xt. However, we can use the available information on y0:T and u0:T also to get a Bayes-

optimal estimate of a past state xt at a previous time t < T . This estimate should be “better” than the forward

filtered P (xt | y0:t, u0:t-1) because it uses the additional information on yt+1:T and ut:T . This is called Bayes smoothing

(slides 06:32 – 06:33).

Derive the backward recursion βt(xt) := P (yt+1:T |xt, ut:T) (the likelihood of all future observations given xt and

knowledge of all subsequent controls) of Bayes smoothing on slide 06:33. Explain in each step which rule/transformation

you applied.

	Particle Filtering the location of a car (6 points)
	Bayes Smoothing (6 points)

